Suppr超能文献

无监督学习在泥炭地地质材料埋藏行为评估中的应用:以碱性氧化裂解产生的木质素部分为例。

Application of Unsupervised Learning for the Evaluation of Burial Behavior of Geomaterials in Peatlands: Case of Lignin Moieties Yielded by Alkaline Oxidative Cleavage.

作者信息

Younes Khaled, Moghnie Sara, Khader Lina, Obeid Emil, Mouhtady Omar, Grasset Laurent, Murshid Nimer

机构信息

College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait.

Université de Poitiers, IC2MP, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, CEDEX 9, 86073 Poitiers, France.

出版信息

Polymers (Basel). 2023 Feb 27;15(5):1200. doi: 10.3390/polym15051200.

Abstract

Tropical Peatlands accumulate organic matter (OM) and a significant source of carbon dioxide (CO) and methane (CH) under anoxic conditions. However, it is still ambiguous where in the peat profile these OM and gases are produced. The composition of organic macromolecules that are present in peatland ecosystems are mainly lignin and polysaccharides. As greater concentrations of lignin are found to be strongly related to the high CO and CH concentrations under anoxic conditions in the surface peat, the need to study the degradation of lignin under anoxic and oxic conditions has emerged. In this study, we found that the "Wet Chemical Degradation" approach is the most preferable and qualified to evaluate the lignin degradation in soils accurately. Then, we applied PCA for the molecular fingerprint consisting of 11 major phenolic sub-units produced by alkaline oxidation using cupric oxide (II) along with alkaline hydrolysis of the lignin sample presented in the investigated peat column called "Sagnes". The development of various characteristic indicators for lignin degradation state on the basis of the relative distribution of lignin phenols was measured by chromatography after CuO-NaOH oxidation. In order to achieve this aim, the so-called Principal Component Analysis (PCA) has been applied for the molecular fingerprint composed of the phenolic sub-units, yielded by CuO-NaOH oxidation. This approach aims to seek the efficiency of the already available proxies and potentially create new ones for the investigation of lignin burial along a peatland. Lignin phenol vegetation index (LPVI) is used for comparison. LPVI showed a higher correlation with PC1 rather than PC2. This confirms the potential of the application of LPVI to decipher vegetation change, even in a dynamic system as the peatland. The population is composed of the depth peat samples, and the variables are the proxies and relative contributions of the 11 yielded phenolic sub-units.

摘要

热带泥炭地在缺氧条件下积累有机物质(OM),是二氧化碳(CO)和甲烷(CH)的重要来源。然而,这些有机物质和气体在泥炭剖面中的产生位置仍不明确。泥炭地生态系统中存在的有机大分子组成主要是木质素和多糖。由于发现表层泥炭在缺氧条件下较高的木质素浓度与高CO和CH浓度密切相关,因此出现了研究缺氧和有氧条件下木质素降解的需求。在本研究中,我们发现“湿化学降解”方法是最适合且能够准确评估土壤中木质素降解的方法。然后,我们将主成分分析(PCA)应用于由11种主要酚类亚基组成的分子指纹,这些亚基是通过使用氧化铜(II)进行碱性氧化以及对研究的泥炭柱“Sagnes”中呈现的木质素样品进行碱性水解产生的。在CuO-NaOH氧化后,通过色谱法测量基于木质素酚相对分布的木质素降解状态的各种特征指标。为了实现这一目标,已将所谓的主成分分析(PCA)应用于由CuO-NaOH氧化产生的酚类亚基组成的分子指纹。该方法旨在探寻现有指标的有效性,并有可能创建新的指标用于研究泥炭地中木质素的埋藏情况。使用木质素酚植被指数(LPVI)进行比较。LPVI与主成分1(PC1)的相关性高于与主成分2(PC2)的相关性。这证实了即使在像泥炭地这样的动态系统中,LPVI在解读植被变化方面的应用潜力。总体由泥炭深度样本组成,变量是11种产生的酚类亚基的指标及其相对贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d18/10007676/a59a618a638b/polymers-15-01200-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验