Suppr超能文献

基于异构传感器网络的大区域土壤监测高效主动学习方法

Active Learning for Efficient Soil Monitoring in Large Terrain with Heterogeneous Sensor Network.

机构信息

Department of Computer & Information Science, CUNY Brooklyn College, Brooklyn, NY 11210, USA.

Department of Computer Science, CUNY Graduate Center, New York, NY 10016, USA.

出版信息

Sensors (Basel). 2023 Feb 21;23(5):2365. doi: 10.3390/s23052365.

Abstract

Soils are a complex ecosystem that provides critical services, such as growing food, supplying antibiotics, filtering wastes, and maintaining biodiversity; hence monitoring soil health and domestication is required for sustainable human development. Low-cost and high-resolution soil monitoring systems are challenging to design and build. Compounded by the sheer size of the monitoring area of interest and the variety of biological, chemical, and physical parameters to monitor, naive approaches to adding or scheduling more sensors will suffer from cost and scalability problems. We investigate a multi-robot sensing system integrated with an active learning-based predictive modeling technique. Taking advantage of advances in machine learning, the predictive model allows us to interpolate and predict soil attributes of interest from the data collected by sensors and soil surveys. The system provides high-resolution prediction when the modeling output is calibrated with static land-based sensors. The active learning modeling technique allows our system to be adaptive in data collection strategy for time-varying data fields, utilizing aerial and land robots for new sensor data. We evaluated our approach using numerical experiments with a soil dataset focusing on heavy metal concentration in a flooded area. The experimental results demonstrate that our algorithms can reduce sensor deployment costs via optimized sensing locations and paths while providing high-fidelity data prediction and interpolation. More importantly, the results verify the adapting behavior of the system to the spatial and temporal variations of soil conditions.

摘要

土壤是一个复杂的生态系统,提供着关键的服务,如种植食物、供应抗生素、过滤废物和维持生物多样性;因此,需要监测土壤健康和驯化情况,以实现可持续的人类发展。设计和构建低成本、高分辨率的土壤监测系统具有挑战性。由于监测区域的规模巨大,需要监测的生物、化学和物理参数种类繁多,因此简单地增加或安排更多传感器的方法会受到成本和可扩展性问题的困扰。我们研究了一种集成主动学习预测建模技术的多机器人传感系统。利用机器学习的进步,预测模型允许我们从传感器和土壤调查收集的数据中插值和预测感兴趣的土壤属性。当建模输出与静态基于陆地的传感器校准时,该系统提供高分辨率的预测。主动学习建模技术使我们的系统能够适应时变数据场的数据收集策略,利用空中和陆地机器人获取新的传感器数据。我们使用一个专注于淹没区重金属浓度的土壤数据集进行了数值实验,评估了我们的方法。实验结果表明,我们的算法可以通过优化的传感位置和路径来降低传感器部署成本,同时提供高保真度的数据预测和插值。更重要的是,结果验证了系统对土壤条件的时空变化的自适应行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/247b/10007343/12cb72fb2b49/sensors-23-02365-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验