Suppr超能文献

基于机器学习的美国西部和中西部大尺度、高分辨率、多深度逐日土壤湿度估算。

Machine learning based estimation of field-scale daily, high resolution, multi-depth soil moisture for the Western and Midwestern United States.

机构信息

Woodwell Climate Research Center, Falmouth, Massachusetts, United States.

Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, United States.

出版信息

PeerJ. 2022 Nov 4;10:e14275. doi: 10.7717/peerj.14275. eCollection 2022.

Abstract

BACKGROUND

High-resolution soil moisture estimates are critical for planning water management and assessing environmental quality. measurements alone are too costly to support the spatial and temporal resolutions needed for water management. Recent efforts have combined calibration data with machine learning algorithms to fill the gap where high resolution moisture estimates are lacking at the field scale. This study aimed to provide calibrated soil moisture models and methodology for generating gridded estimates of soil moisture at multiple depths, according to user-defined temporal periods, spatial resolution and extent.

METHODS

We applied nearly one million national library soil moisture records from over 100 sites, spanning the U.S. Midwest and West, to build Quantile Random Forest (QRF) calibration models. The QRF models were built on covariates including soil moisture estimates from North American Land Data Assimilation System (NLDAS), soil properties, climate variables, digital elevation models, and remote sensing-derived indices. We also explored an alternative approach that adopted a regionalized calibration dataset for the Western U.S. The broad-scale QRF models were independently validated according to sampling depths, land cover type, and observation period. We then explored the model performance improved with local samples used for spiking. Finally, the QRF models were applied to estimate soil moisture at the field scale where evaluation was carried out to check estimated temporal and spatial patterns.

RESULTS

The broad-scale QRF model showed moderate performance (R = 0.53, RMSE = 0.078 m/m) when data points from all depth layers (up to 100 cm) were considered for an independent validation. Elevation, NLDAS-derived moisture, soil properties, and sampling depth were ranked as the most important covariates. The best model performance was observed for forest and pasture sites (R > 0.5; RMSE < 0.09 m/m), followed by grassland and cropland (R > 0.4; RMSE < 0.11 m/m). Model performance decreased with sampling depths and was slightly lower during the winter months. Spiking the national QRF model with local samples improved model performance by reducing the RMSE to less than 0.05 m/m for grassland sites. At the field scale, model estimates illustrated more accurate temporal trends for surface than subsurface soil layers. Model estimated spatial patterns need to be further improved and validated with management data.

CONCLUSIONS

The model accuracy for top 0-20 cm soil depth (R > 0.5, RMSE < 0.08 m/m) showed promise for adopting the methodology for soil moisture monitoring. The success of spiking the national model with local samples showed the need to collect multi-year high frequency (, hourly) sensor-based field measurements to improve estimates of soil moisture for a longer time period. Future work should improve model performance for deeper depths with additional hydraulic properties and use of locally-selected calibration datasets.

摘要

背景

高分辨率土壤湿度估计对于规划水资源管理和评估环境质量至关重要。仅测量成本太高,无法支持水资源管理所需的空间和时间分辨率。最近的努力结合了校准数据和机器学习算法,以填补现场尺度缺乏高分辨率湿度估计的空白。本研究旨在根据用户定义的时间周期、空间分辨率和范围,提供校准后的土壤湿度模型和生成多深度土壤湿度网格化估计的方法。

方法

我们应用了来自美国中西部和西部 100 多个地点的近 100 万个国家图书馆土壤湿度记录,构建了分位数随机森林(QRF)校准模型。QRF 模型建立在协变量的基础上,包括北美土地数据同化系统(NLDAS)的土壤湿度估计值、土壤特性、气候变量、数字高程模型和遥感衍生指数。我们还探索了一种采用美国西部区域化校准数据集的替代方法。根据采样深度、土地覆盖类型和观测期,对大尺度 QRF 模型进行了独立验证。然后,我们探索了使用本地样本进行尖峰化来提高模型性能的方法。最后,应用 QRF 模型估算田间尺度的土壤湿度,并进行评估以检查估计的时间和空间模式。

结果

当考虑所有深度层(高达 100cm)的数据点进行独立验证时,大尺度 QRF 模型表现出中等性能(R=0.53,RMSE=0.078m/m)。海拔、NLDAS 衍生湿度、土壤特性和采样深度被评为最重要的协变量。在森林和牧场站点观察到最佳模型性能(R>0.5;RMSE<0.09m/m),其次是草原和耕地(R>0.4;RMSE<0.11m/m)。随着采样深度的增加,模型性能下降,冬季月份略低。用本地样本对全国 QRF 模型进行尖峰化可以降低 RMSE,使草原站点的模型性能低于 0.05m/m。在田间尺度上,模型估计显示出表面土壤层比地下土壤层更准确的时间趋势。需要进一步改进和验证管理数据以改善模型的空间格局。

结论

对于 0-20cm 土壤深度(R>0.5,RMSE<0.08m/m)的模型精度表明,该方法具有土壤湿度监测的应用前景。用本地样本对全国模型进行尖峰化的成功表明,需要收集多年高频(,每小时)基于传感器的田间测量数据,以在更长时间内提高土壤湿度估计的准确性。未来的工作应该通过增加水力特性和使用本地选择的校准数据集来提高对更深深度的模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/085a/9639422/046f75a78bfe/peerj-10-14275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验