Suppr超能文献

通过抓握时的肌电图实现手骨关节炎的早期和客观检测。

Toward Early and Objective Hand Osteoarthritis Detection by Using EMG during Grasps.

机构信息

Department of Mechanical Engineering and Construction, Universitat Jaume I, E12071 Castellón, Spain.

出版信息

Sensors (Basel). 2023 Feb 22;23(5):2413. doi: 10.3390/s23052413.

Abstract

The early and objective detection of hand pathologies is a field that still requires more research. One of the main signs of hand osteoarthritis (HOA) is joint degeneration, which causes loss of strength, among other symptoms. HOA is usually diagnosed with imaging and radiography, but the disease is in an advanced stage when HOA is observable by these methods. Some authors suggest that muscle tissue changes seem to occur before joint degeneration. We propose recording muscular activity to look for indicators of these changes that might help in early diagnosis. Muscular activity is often measured using electromyography (EMG), which consists of recording electrical muscle activity. The aim of this study is to study whether different EMG characteristics (zero crossing, wavelength, mean absolute value, muscle activity) via collection of forearm and hand EMG signals are feasible alternatives to the existing methods of detecting HOA patients' hand function. We used surface EMG to measure the electrical activity of the dominant hand's forearm muscles with 22 healthy subjects and 20 HOA patients performing maximum force during six representative grasp types (the most commonly used in ADLs). The EMG characteristics were used to identify discriminant functions to detect HOA. The results show that forearm muscles are significantly affected by HOA in EMG terms, with very high success rates (between 93.3% and 100%) in the discriminant analyses, which suggest that EMG can be used as a preliminary step towards confirmation with current HOA diagnostic techniques. Digit flexors during cylindrical grasp, thumb muscles during oblique palmar grasp, and wrist extensors and radial deviators during the intermediate power-precision grasp are good candidates to help detect HOA.

摘要

手部病理学的早期客观检测仍是一个需要进一步研究的领域。手部骨关节炎 (HOA) 的主要标志之一是关节退化,这会导致力量丧失等症状。HOA 通常通过影像学和放射学进行诊断,但当这些方法可以观察到 HOA 时,疾病已经处于晚期。一些作者认为,肌肉组织的变化似乎发生在关节退化之前。我们建议记录肌肉活动,以寻找这些变化的指标,这可能有助于早期诊断。肌肉活动通常使用肌电图 (EMG) 进行测量,EMG 包括记录肌肉的电活动。本研究旨在研究通过采集前臂和手部 EMG 信号,不同的 EMG 特征(过零、波长、均方根值、肌肉活动)是否可以替代现有的 HOA 患者手部功能检测方法。我们使用表面肌电图测量了 22 名健康受试者和 20 名 HOA 患者在进行 6 种代表性抓握类型(日常生活活动中最常用的抓握类型)时的优势手前臂肌肉的电活动。使用 EMG 特征来识别判别函数以检测 HOA。结果表明,前臂肌肉在 EMG 方面受到 HOA 的显著影响,判别分析的成功率非常高(93.3%至 100%之间),这表明 EMG 可作为当前 HOA 诊断技术的初步确认步骤。在圆柱状抓握时的手指屈肌、在斜掌抓握时的拇指肌肉以及在中等力量-精度抓握时的腕伸肌和桡侧偏肌是帮助检测 HOA 的良好候选者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09a9/10006890/27ba3ce31d5f/sensors-23-02413-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验