Suppr超能文献

基于数据挖掘技术的空巢老人高活跃用户管理。

The Empty-Nest Power User Management Based on Data Mining Technology.

机构信息

College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China.

Electric Power Research Institute, State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310007, China.

出版信息

Sensors (Basel). 2023 Feb 23;23(5):2485. doi: 10.3390/s23052485.

Abstract

With the aging of the social population structure, the number of empty-nesters is also increasing. Therefore, it is necessary to manage empty-nesters with data mining technology. This paper proposed an empty-nest power user identification and power consumption management method based on data mining. Firstly, an empty-nest user identification algorithm based on weighted random forest was proposed. Compared with similar algorithms, the results indicate that the performance of the algorithm is the best, and the identification accuracy of empty-nest users is 74.2%. Then a method for analyzing the electricity consumption behavior of empty-nest users based on fusion clustering index adaptive cosine K-means was proposed, which can adaptively select the optimal number of clusters. Compared with similar algorithms, the algorithm has the shortest running time, the smallest Sum of the Squared Error (SSE), and the largest mean distance between clusters (MDC), which are 3.4281 s, 31.6591 and 13.9513, respectively. Finally, an anomaly detection model with an Auto-regressive Integrated Moving Average (ARIMA) algorithm and an isolated forest algorithm was established. The case analysis shows that the recognition accuracy of abnormal electricity consumption for empty-nest users was 86%. The results indicate that the model can effectively detect the abnormal behavior of empty-nest power users and help the power department to better serve empty-nest users.

摘要

随着社会人口结构的老龄化,空巢老人的数量也在增加。因此,有必要利用数据挖掘技术来管理空巢老人。本文提出了一种基于数据挖掘的空巢电力用户识别和用电管理方法。首先,提出了一种基于加权随机森林的空巢用户识别算法。与类似算法相比,结果表明该算法的性能最佳,空巢用户的识别准确率为 74.2%。然后,提出了一种基于融合聚类指标自适应余弦 K-均值的空巢用户用电行为分析方法,该方法可以自适应地选择最佳的聚类数量。与类似算法相比,该算法的运行时间最短,误差平方和(SSE)最小,簇间平均距离(MDC)最大,分别为 3.4281s、31.6591 和 13.9513。最后,建立了一个具有自回归综合移动平均(ARIMA)算法和孤立森林算法的异常检测模型。案例分析表明,空巢用户异常用电的识别准确率为 86%。结果表明,该模型可以有效地检测空巢电力用户的异常行为,帮助电力部门更好地为空巢用户服务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45bd/10007684/13e3f1df9cfc/sensors-23-02485-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验