Advanced Broadband Communications Center (CCABA), Universitat Politècnica de Catalunya (UPC), 08034 Barcelona, Spain.
Infinera Unipessoal Lda., 2790-078 Carnaxide, Portugal.
Sensors (Basel). 2023 Feb 23;23(5):2500. doi: 10.3390/s23052500.
New 5 G and beyond services demand innovative solutions in optical transport to increase efficiency and flexibility and reduce capital (CAPEX) and operational (OPEX) expenditures to support heterogeneous and dynamic traffic. In this context, optical point-to-multipoint (P2MP) connectivity is seen as an alternative to provide connectivity to multiple sites from a single source, thus potentially both reducing CAPEX and OPEX. Digital subcarrier multiplexing (DSCM) has been shown as a feasible candidate for optical P2MP in view of its ability to generate multiple subcarriers (SC) in the frequency domain that can be used to serve several destinations. This paper proposes a different technology, named optical constellation slicing (OCS), that enables a source to communicate with multiple destinations by focusing on the time domain. OCS is described in detail and compared to DSCM by simulation, where the results show that both OCS and DSCM provide a good performance in terms of the bit error rate (BER) for access/metro applications. An exhaustive quantitative study is afterwards carried out to compare OCS and DSCM considering its support to dynamic packet layer P2P traffic only and mixed P2P and P2MP traffic; throughput, efficiency, and cost are used here as the metrics. As a baseline for comparison, the traditional optical P2P solution is also considered in this study. Numerical results show that OCS and DSCM provide a better efficiency and cost savings than traditional optical P2P connectivity. For P2P only traffic, OCS and DSCM are utmost 14.6% more efficient than the traditional lightpath solution, whereas for heterogeneous P2P + P2MP traffic, a 25% efficiency improvement is achieved, making OCS 12% more efficient than DSCM. Interestingly, the results show that for P2P only traffic, DSCM provides more savings of up to 12% than OCS, whereas for heterogeneous traffic, OCS can save up to 24.6% more than DSCM.
新的 5G 及未来服务要求在光传输中采用创新解决方案,以提高效率和灵活性,降低资本支出(CAPEX)和运营支出(OPEX),从而支持异构和动态业务。在此背景下,光点对多点(P2MP)连接被视为一种替代方案,可以从单个源为多个站点提供连接,从而有可能降低 CAPEX 和 OPEX。鉴于其在频域中产生多个子载波(SC)的能力,这些子载波可用于为多个目的地提供服务,数字子载波复用(DSCM)已被证明是一种可行的光 P2MP 候选技术。本文提出了一种不同的技术,称为光星座切片(OCS),它可以使源在时域中与多个目的地进行通信。详细描述了 OCS,并通过仿真与 DSCM 进行了比较,结果表明,OCS 和 DSCM 在接入/城域应用的误码率(BER)方面都具有良好的性能。随后进行了详尽的定量研究,仅考虑支持动态分组层 P2P 流量和混合 P2P 和 P2MP 流量时,对 OCS 和 DSCM 进行了比较;吞吐量、效率和成本用作指标。作为比较的基准,本研究还考虑了传统的光 P2P 解决方案。数值结果表明,OCS 和 DSCM 比传统的光 P2P 连接具有更高的效率和成本节约。对于仅 P2P 流量,OCS 和 DSCM 比传统的光通路解决方案效率提高了 14.6%,而对于异构的 P2P+P2MP 流量,效率提高了 25%,使得 OCS 比 DSCM 效率提高了 12%。有趣的是,结果表明,对于仅 P2P 流量,DSCM 比 OCS 节省高达 12%,而对于异构流量,OCS 比 DSCM 节省高达 24.6%。