Suppr超能文献

神经网络模型在移动边缘计算中用于室内自主车辆的驾驶控制。

Neural Network Models for Driving Control of Indoor Autonomous Vehicles in Mobile Edge Computing.

机构信息

Department of Computer Information and Communication Engineering, Kangwon National University, Chuncheon 24341, Gangwondo, Republic of Korea.

出版信息

Sensors (Basel). 2023 Feb 25;23(5):2575. doi: 10.3390/s23052575.

Abstract

Mobile edge computing has been proposed as a solution for solving the latency problem of traditional cloud computing. In particular, mobile edge computing is needed in areas such as autonomous driving, which requires large amounts of data to be processed without latency for safety. Indoor autonomous driving is attracting attention as one of the mobile edge computing services. Furthermore, it relies on its sensors for location recognition because indoor autonomous driving cannot use a GPS device, as is the case with outdoor driving. However, while the autonomous vehicle is being driven, the real-time processing of external events and the correction of errors are required for safety. Furthermore, an efficient autonomous driving system is required because it is a mobile environment with resource constraints. This study proposes neural network models as a machine-learning method for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the range data measured with the LiDAR sensor. We designed six neural network models to be evaluated according to the number of input data points. In addition, we made an autonomous vehicle based on the Raspberry Pi for driving and learning and an indoor circular driving track for collecting data and performance evaluation. Finally, we evaluated six neural network models in terms of confusion matrix, response time, battery consumption, and driving command accuracy. In addition, when neural network learning was applied, the effect of the number of inputs was confirmed in the usage of resources. The result will influence the choice of an appropriate neural network model for an indoor autonomous vehicle.

摘要

移动边缘计算被提出作为解决传统云计算延迟问题的解决方案。特别是在自动驾驶等领域,需要大量的数据处理而不能有延迟,这对移动边缘计算提出了要求。室内自动驾驶作为移动边缘计算服务之一受到关注。此外,它依赖于传感器进行位置识别,因为室内自动驾驶无法使用 GPS 设备,而这在户外驾驶中是可行的。然而,在自动驾驶车辆行驶过程中,需要实时处理外部事件并纠正错误以保证安全。此外,还需要一个高效的自动驾驶系统,因为它是一个资源有限的移动环境。本研究提出了神经网络模型作为室内环境下自动驾驶的机器学习方法。神经网络模型基于 LiDAR 传感器测量的距离数据,预测当前位置最适合的驾驶指令。我们设计了六个神经网络模型,根据输入数据点的数量进行评估。此外,我们基于 Raspberry Pi 制作了一个自动驾驶汽车,并设计了一个室内圆形驾驶轨道用于数据收集和性能评估。最后,我们从混淆矩阵、响应时间、电池消耗和驾驶指令准确性等方面评估了六个神经网络模型。此外,在进行神经网络学习时,还确认了输入数量对资源使用的影响。研究结果将影响室内自动驾驶车辆选择合适的神经网络模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b766/10007646/27d32524c400/sensors-23-02575-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验