Suppr超能文献

用于边缘计算架构中自动驾驶车辆控制的改进鹈鹕优化算法与深度神经网络的协同集成。

Synergistic integration of refined pelican optimization algorithm and deep neural networks for autonomous vehicle control in edge computing architectures.

作者信息

Duan Fude, Han Bing, Bu Xiongzhu

机构信息

School of Intelligent Transportation, Nanjing Vocational College of Information Technology, Jiangsu Nanjing, 210000, China.

School of Mechanical Engineering, Nanjing University of Science and Technology, Jiangsu Nanjing, 210094, China.

出版信息

Sci Rep. 2025 Jun 2;15(1):19338. doi: 10.1038/s41598-025-98486-y.

Abstract

Autonomous vehicles and mobile edge computing's confluence have raised an innovative model for immediate decision-making and improved computational abilities. But, enhancing vehicle management systems to guarantee effective enactment remains an important challenge. Present approaches regularly depend on intricate algorithms and multiple sensors, that result in improved computational overhead and potential latency. The current study resolves the present gap by offering a new hybrid framework, which synergistically mixes optimization algorithms and deep neural networks through the advantages of mobile edge computing. Precisely, this research presents a hybrid model for autonomous vehicle management by integrating a refined version of the RPO or Pelican Optimizer with deep neural networks attuned to mobile edge computing environments. The chief contributions of the present study have been threefold: (1) the improvement of a particular autonomous driving method optimized for mobile edge computing platforms; (2) the arrangement of an optimized MobileNet method employing the RPO algorithm that uses LiDAR sensor data for effective object recognition and path design; and (3) the construction of an indoor vehicle prototype by mean of a microcontroller and LiDAR sensors, after a comprehensive performance evaluation of inference models, and analyzing the trade-offs between input size and computational effectiveness. Experimental outcomes show the efficiency and reliability of the suggested hybrid model, through improving autonomous vehicle management and decision-making abilities within the mobile edge computing paradigm. The current study contributes to the enhancement of autonomous vehicle research and provides an innovative solution for effective and precise vehicle control within edge computing environments.

摘要

自动驾驶车辆与移动边缘计算的融合提出了一种用于即时决策和提升计算能力的创新模型。但是,增强车辆管理系统以确保有效实施仍然是一项重大挑战。目前的方法通常依赖于复杂的算法和多个传感器,这会导致计算开销增加和潜在延迟。当前的研究通过提供一种新的混合框架来解决当前的差距,该框架通过移动边缘计算的优势将优化算法和深度神经网络协同混合。具体而言,本研究通过将RPO或鹈鹕优化器的改进版本与针对移动边缘计算环境进行调整的深度神经网络相结合,提出了一种用于自动驾驶车辆管理的混合模型。本研究的主要贡献有三个方面:(1)改进了一种针对移动边缘计算平台优化的特定自动驾驶方法;(2)安排了一种采用RPO算法的优化MobileNet方法,该方法使用激光雷达传感器数据进行有效的目标识别和路径设计;(3)在对推理模型进行全面性能评估并分析输入大小与计算效率之间的权衡之后,借助微控制器和激光雷达传感器构建了一个室内车辆原型。实验结果通过提升移动边缘计算范式内的自动驾驶车辆管理和决策能力,展示了所提出的混合模型的效率和可靠性。当前的研究有助于加强自动驾驶车辆研究,并为边缘计算环境中的有效且精确的车辆控制提供了一种创新解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c54f/12130489/99e7d9d9bed7/41598_2025_98486_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验