Suppr超能文献

基于模型控制的四自由度康复并联机器人及其重力项在线辨识

Model-Based Control of a 4-DOF Rehabilitation Parallel Robot with Online Identification of the Gravitational Term.

机构信息

Departamento de Ingeniería de Sistemas y Automática, Instituto de Automática e Informática Industrial, Camino de Vera s/n, 46022 Valencia, Spain.

Centro de Investigación en Ingeniería Mecánica, Departamento de Ingeniería Mecánica y de Materiales, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

出版信息

Sensors (Basel). 2023 Mar 3;23(5):2790. doi: 10.3390/s23052790.

Abstract

Parallel robots are being increasingly used as a fundamental component of lower-limb rehabilitation systems. During rehabilitation therapies, the parallel robot must interact with the patient, which raises several challenges to the control system: (1) The weight supported by the robot can vary from patient to patient, and even for the same patient, making standard model-based controllers unsuitable for those tasks since they rely on constant dynamic models and parameters. (2) The identification techniques usually consider the estimation of all dynamic parameters, bringing about challenges concerning robustness and complexity. This paper proposes the design and experimental validation of a model-based controller comprising a proportional-derivative controller with gravity compensation applied to a 4-DOF parallel robot for knee rehabilitation, where the gravitational forces are expressed in terms of relevant dynamic parameters. The identification of such parameters is possible by means of least squares methods. The proposed controller has been experimentally validated, holding the error stable following significant payload changes in terms of the weight of the patient's leg. This novel controller allows us to perform both identification and control simultaneously and is easy to tune. Moreover, its parameters have an intuitive interpretation, contrary to a conventional adaptive controller. The performance of a conventional adaptive controller and the proposed one are compared experimentally.

摘要

并联机器人正被越来越多地用作下肢康复系统的基本组成部分。在康复治疗过程中,并联机器人必须与患者进行交互,这给控制系统带来了几个挑战:(1)机器人所支撑的重量可能因患者而异,即使对于同一患者,基于标准模型的控制器也不适合这些任务,因为它们依赖于恒定的动力学模型和参数。(2)识别技术通常考虑所有动力学参数的估计,这带来了鲁棒性和复杂性方面的挑战。本文提出了一种基于模型的控制器的设计和实验验证,该控制器由一个带重力补偿的比例微分控制器组成,应用于用于膝关节康复的 4-DOF 并联机器人,其中重力以相关动力学参数的形式表示。通过最小二乘法可以对这些参数进行识别。所提出的控制器已经过实验验证,在患者腿部重量发生重大变化的情况下,能够保持误差稳定。这种新型控制器允许我们同时进行识别和控制,并且易于调整。此外,与传统的自适应控制器相反,其参数具有直观的解释。实验比较了传统自适应控制器和所提出的控制器的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cfe/10007595/074e9e2382b5/sensors-23-02790-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验