Suppr超能文献

一种用于脑影像遗传学的多任务 SCCA 方法及其在神经退行性疾病中的应用。

A multi-task SCCA method for brain imaging genetics and its application in neurodegenerative diseases.

机构信息

Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China.

School of Automation, Northwestern Polytechnical University, Xi'an, Shannxi 710072, China.

出版信息

Comput Methods Programs Biomed. 2023 Apr;232:107450. doi: 10.1016/j.cmpb.2023.107450. Epub 2023 Mar 3.

Abstract

BACKGROUND AND OBJECTIVES

In brain imaging genetics, multi-task sparse canonical correlation analysis (MTSCCA) is effective to study the bi-multivariate associations between genetic variations such as single nucleotide polymorphisms (SNPs) and multi-modal imaging quantitative traits (QTs). However, most existing MTSCCA methods are neither supervised nor capable of distinguishing the shared patterns of multi-modal imaging QTs from the specific patterns.

METHODS

A new diagnosis-guided MTSCCA (DDG-MTSCCA) with parameter decomposition and graph-guided pairwise group lasso penalty was proposed. Specifically, the multi-tasking modeling paradigm enables us to comprehensively identify risk genetic loci by jointly incorporating multi-modal imaging QTs. The regression sub-task was raised to guide the selection of diagnosis-related imaging QTs. To reveal the diverse genetic mechanisms, the parameter decomposition and different constraints were utilized to facilitate the identification of modality-consistent and -specific genotypic variations. Besides, a network constraint was added to find out meaningful brain networks. The proposed method was applied to synthetic data and two real neuroimaging data sets respectively from Alzheimer's disease neuroimaging initiative (ADNI) and Parkinson's progression marker initiative (PPMI) databases.

RESULTS

Compared with the competitive methods, the proposed method exhibited higher or comparable canonical correlation coefficients (CCCs) and better feature selection results. In particular, in the simulation study, DDG-MTSCCA showed the best anti-noise ability and achieved the highest average hit rate, about 25% higher than MTSCCA. On the real data of Alzheimer's disease (AD) and Parkinson's disease (PD), our method obtained the highest average testing CCCs, about 40% ∼ 50% higher than MTSCCA. Especially, our method could select more comprehensive feature subsets, and the top five SNPs and imaging QTs were all disease-related. The ablation experimental results also demonstrated the significance of each component in the model, i.e., the diagnosis guidance, parameter decomposition, and network constraint.

CONCLUSIONS

These results on simulated data, ADNI and PPMI cohorts suggested the effectiveness and generalizability of our method in identifying meaningful disease-related markers. DDG-MTSCCA could be a powerful tool in brain imaging genetics, worthy of in-depth study.

摘要

背景与目的

在脑影像遗传学中,多任务稀疏典型相关分析(MTSCCA)是一种有效的研究方法,用于研究遗传变异(如单核苷酸多态性[SNP])与多模态影像定量特征(QT)之间的双向多变量关联。然而,大多数现有的 MTSCCA 方法既没有监督,也不能区分多模态影像 QT 的共享模式和特定模式。

方法

提出了一种新的基于诊断引导的多任务稀疏典型相关分析(DDG-MTSCCA),该方法具有参数分解和图引导的成对组套索惩罚。具体来说,多任务建模范式使我们能够通过联合纳入多模态影像 QT,全面识别风险遗传位点。回归子任务被提出,以指导与诊断相关的影像 QT 的选择。为了揭示不同的遗传机制,利用参数分解和不同的约束条件,促进了模态一致和特定基因型变异的识别。此外,还添加了一个网络约束,以找到有意义的脑网络。该方法分别应用于来自阿尔茨海默病神经影像学倡议(ADNI)和帕金森病进展标志物倡议(PPMI)数据库的合成数据和两个真实的神经影像数据集。

结果

与竞争方法相比,所提出的方法表现出更高或可比的典型相关系数(CCC)和更好的特征选择结果。特别是在模拟研究中,DDG-MTSCCA 表现出最好的抗噪声能力,平均命中率最高,比 MTSCCA 高约 25%。在 AD 和 PD 的真实数据上,我们的方法获得了最高的平均测试 CCC,比 MTSCCA 高约 40%~50%。特别是,我们的方法可以选择更全面的特征子集,前五个 SNP 和影像 QT 都是与疾病相关的。消融实验结果也证明了模型中每个组成部分的重要性,即诊断指导、参数分解和网络约束。

结论

模拟数据、ADNI 和 PPMI 队列的结果表明,该方法在识别有意义的疾病相关标志物方面具有有效性和泛化性。DDG-MTSCCA 可以成为脑影像遗传学中的一种强大工具,值得深入研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验