Suppr超能文献

通过脏多任务学习方法关联多模态脑影像表型和遗传风险因素。

Associating Multi-Modal Brain Imaging Phenotypes and Genetic Risk Factors via a Dirty Multi-Task Learning Method.

出版信息

IEEE Trans Med Imaging. 2020 Nov;39(11):3416-3428. doi: 10.1109/TMI.2020.2995510. Epub 2020 Oct 28.

Abstract

Brain imaging genetics becomes more and more important in brain science, which integrates genetic variations and brain structures or functions to study the genetic basis of brain disorders. The multi-modal imaging data collected by different technologies, measuring the same brain distinctly, might carry complementary information. Unfortunately, we do not know the extent to which the phenotypic variance is shared among multiple imaging modalities, which further might trace back to the complex genetic mechanism. In this paper, we propose a novel dirty multi-task sparse canonical correlation analysis (SCCA) to study imaging genetic problems with multi-modal brain imaging quantitative traits (QTs) involved. The proposed method takes advantages of the multi-task learning and parameter decomposition. It can not only identify the shared imaging QTs and genetic loci across multiple modalities, but also identify the modality-specific imaging QTs and genetic loci, exhibiting a flexible capability of identifying complex multi-SNP-multi-QT associations. Using the state-of-the-art multi-view SCCA and multi-task SCCA, the proposed method shows better or comparable canonical correlation coefficients and canonical weights on both synthetic and real neuroimaging genetic data. In addition, the identified modality-consistent biomarkers, as well as the modality-specific biomarkers, provide meaningful and interesting information, demonstrating the dirty multi-task SCCA could be a powerful alternative method in multi-modal brain imaging genetics.

摘要

脑影像遗传学在脑科学中变得越来越重要,它将遗传变异与大脑结构或功能相结合,研究大脑疾病的遗传基础。不同技术采集的多模态影像数据,对同一大脑进行不同的测量,可能携带互补信息。不幸的是,我们不知道在多大程度上多种成像模式之间存在表型方差共享,这可能进一步追溯到复杂的遗传机制。在本文中,我们提出了一种新颖的脏多任务稀疏典型相关分析(SCCA),以研究涉及多模态脑影像定量性状(QT)的影像遗传问题。所提出的方法利用多任务学习和参数分解。它不仅可以识别多个模态之间的共享成像 QT 和遗传位置,还可以识别模态特定的成像 QT 和遗传位置,表现出识别复杂多 SNP-多 QT 关联的灵活能力。在合成和真实神经影像遗传数据上,所提出的方法使用最先进的多视图 SCCA 和多任务 SCCA,显示出更好或可比的典型相关系数和典型权重。此外,所识别的模态一致生物标志物以及模态特异性生物标志物提供了有意义和有趣的信息,表明脏多任务 SCCA 可能是多模态脑影像遗传学的一种强大替代方法。

相似文献

1
Associating Multi-Modal Brain Imaging Phenotypes and Genetic Risk Factors via a Dirty Multi-Task Learning Method.
IEEE Trans Med Imaging. 2020 Nov;39(11):3416-3428. doi: 10.1109/TMI.2020.2995510. Epub 2020 Oct 28.
2
A multi-task SCCA method for brain imaging genetics and its application in neurodegenerative diseases.
Comput Methods Programs Biomed. 2023 Apr;232:107450. doi: 10.1016/j.cmpb.2023.107450. Epub 2023 Mar 3.
3
Fast Multi-Task SCCA Learning with Feature Selection for Multi-Modal Brain Imaging Genetics.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:356-361. doi: 10.1109/BIBM.2018.8621298. Epub 2019 Jan 24.
4
Multi-Task Sparse Canonical Correlation Analysis with Application to Multi-Modal Brain Imaging Genetics.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):227-239. doi: 10.1109/TCBB.2019.2947428. Epub 2021 Feb 3.
6
Identify Consistent Cross-Modality Imaging Genetic Patterns via Discriminant Sparse Canonical Correlation Analysis.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jul-Aug;18(4):1549-1561. doi: 10.1109/TCBB.2019.2944825. Epub 2021 Aug 6.
7
Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm.
Bioinformatics. 2014 Sep 1;30(17):i564-71. doi: 10.1093/bioinformatics/btu465.
10
Identifying frequency-dependent imaging genetic associations via hypergraph-structured multi-task sparse canonical correlation analysis.
Comput Biol Med. 2024 Mar;171:108051. doi: 10.1016/j.compbiomed.2024.108051. Epub 2024 Jan 29.

引用本文的文献

1
Trustworthy causal biomarker discovery: a multiomics brain imaging genetics-based approach.
Bioinformatics. 2025 Jul 1;41(Supplement_1):i227-i236. doi: 10.1093/bioinformatics/btaf257.
4
Associating brain imaging phenotypes and genetic risk factors a hypergraph based netNMF method.
Front Aging Neurosci. 2023 Mar 2;15:1052783. doi: 10.3389/fnagi.2023.1052783. eCollection 2023.
5
Imaging Genetics in Epilepsy: Current Knowledge and New Perspectives.
Front Mol Neurosci. 2022 May 30;15:891621. doi: 10.3389/fnmol.2022.891621. eCollection 2022.

本文引用的文献

2
Detecting genetic associations with brain imaging phenotypes in Alzheimer's disease via a novel structured SCCA approach.
Med Image Anal. 2020 Apr;61:101656. doi: 10.1016/j.media.2020.101656. Epub 2020 Jan 23.
3
Multi-Task Sparse Canonical Correlation Analysis with Application to Multi-Modal Brain Imaging Genetics.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):227-239. doi: 10.1109/TCBB.2019.2947428. Epub 2021 Feb 3.
5
Non-coding variability at the APOE locus contributes to the Alzheimer's risk.
Nat Commun. 2019 Jul 25;10(1):3310. doi: 10.1038/s41467-019-10945-z.
6
Differential insular cortex sub-regional atrophy in neurodegenerative diseases: a systematic review and meta-analysis.
Brain Imaging Behav. 2020 Dec;14(6):2799-2816. doi: 10.1007/s11682-019-00099-3.
7
Fast Multi-Task SCCA Learning with Feature Selection for Multi-Modal Brain Imaging Genetics.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2018 Dec;2018:356-361. doi: 10.1109/BIBM.2018.8621298. Epub 2019 Jan 24.
8
Neurogenetic contributions to amyloid beta and tau spreading in the human cortex.
Nat Med. 2018 Dec;24(12):1910-1918. doi: 10.1038/s41591-018-0206-4. Epub 2018 Oct 29.
9
Genome-wide association study of brain amyloid deposition as measured by Pittsburgh Compound-B (PiB)-PET imaging.
Mol Psychiatry. 2021 Jan;26(1):309-321. doi: 10.1038/s41380-018-0246-7. Epub 2018 Oct 25.
10
A novel SCCA approach via truncated ℓ1-norm and truncated group lasso for brain imaging genetics.
Bioinformatics. 2018 Jan 15;34(2):278-285. doi: 10.1093/bioinformatics/btx594.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验