Suppr超能文献

用于预测鼻咽癌肿瘤治疗反应的体素内不相干运动放射组学列线图

Intravoxel incoherent motion radiomics nomogram for predicting tumor treatment responses in nasopharyngeal carcinoma.

作者信息

Guo Yihao, Dai Ganmian, Xiong Xiaoli, Wang Xiaoyi, Chen Huijuan, Zhou Xiaoyue, Huang Weiyuan, Chen Feng

机构信息

Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China.

Siemens Healthineers Digital Technology (Shanghai) Co., Ltd., Shanghai 201306, China.

出版信息

Transl Oncol. 2023 May;31:101648. doi: 10.1016/j.tranon.2023.101648. Epub 2023 Mar 9.

Abstract

BACKGROUND

Intravoxel incoherent motion (IVIM) plays an important role in predicting treatment responses in patient with nasopharyngeal carcinoma (NPC). The goal of this study was to develop and validate a radiomics nomogram based on IVIM parametric maps and clinical data for the prediction of treatment responses in NPC patients.

METHODS

Eighty patients with biopsy-proven NPC were enrolled in this study. Sixty-two patients had complete responses and 18 patients had incomplete responses to treatment. Each patient received a multiple b-value diffusion-weighted imaging (DWI) examination before treatment. Radiomics features were extracted from IVIM parametric maps derived from DWI image. Feature selection was performed by the least absolute shrinkage and selection operator method. Radiomics signature was generated by support vector machine based on the selected features. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) values were used to evaluate the diagnostic performance of radiomics signature. A radiomics nomogram was established by integrating the radiomics signature and clinical data.

RESULTS

The radiomics signature showed good prognostic performance to predict treatment response in both training (AUC = 0.906, P<0.001) and testing (AUC = 0.850, P<0.001) cohorts. The radiomic nomogram established by integrating the radiomic signature with clinical data significantly outperformed clinical data alone (C-index, 0.929 vs 0.724; P<0.0001).

CONCLUSIONS

The IVIM-based radiomics nomogram provided high prognostic ability to treatment responses in patients with NPC. The IVIM-based radiomics signature has the potential to be a new biomarker in prediction of the treatment responses and may affect treatment strategies in patients with NPC.

摘要

背景

体素内不相干运动(IVIM)在预测鼻咽癌(NPC)患者的治疗反应中起着重要作用。本研究的目的是开发并验证一种基于IVIM参数图和临床数据的放射组学列线图,用于预测NPC患者的治疗反应。

方法

本研究纳入了80例经活检证实的NPC患者。62例患者治疗后完全缓解,18例患者治疗后未完全缓解。每位患者在治疗前均接受了多b值扩散加权成像(DWI)检查。从DWI图像导出的IVIM参数图中提取放射组学特征。采用最小绝对收缩和选择算子法进行特征选择。基于所选特征,通过支持向量机生成放射组学特征标签。采用受试者工作特征(ROC)曲线和ROC曲线下面积(AUC)值评估放射组学特征标签的诊断性能。通过整合放射组学特征标签和临床数据建立放射组学列线图。

结果

放射组学特征标签在训练队列(AUC = 0.906,P<0.001)和测试队列(AUC = 0.850,P<0.001)中均显示出良好的预测治疗反应的预后性能。将放射组学特征标签与临床数据整合建立的放射组学列线图显著优于单独的临床数据(C指数,0.929对0.724;P<0.0001)。

结论

基于IVIM的放射组学列线图对NPC患者的治疗反应具有较高的预后预测能力。基于IVIM的放射组学特征标签有可能成为预测治疗反应的新型生物标志物,并可能影响NPC患者的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ec7/10020114/846fc275f203/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验