Suppr超能文献

用于预测美国癌症联合委员会/国际抗癌联盟第九版I期鼻咽癌有争议亚组中同步放化疗和单纯放疗治疗反应的综合临床-影像组学模型

Integrated clinical-radiomic model for predicting treatment response of concurrent chemo-radiotherapy and radiotherapy alone in controversial subgroup of AJCC/UICC ninth edition stage I nasopharyngeal cancer.

作者信息

Ng Ka Yan, Chen Xinyue, Huang Mohan, Kong Luoyi, Cheung Steven Kwoon-Ting, Wing Chi Chan Lawrence

机构信息

Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR 999077, China.

Department of Clinical Oncology, Tuen Mun Hospital, Hong Kong SAR 999077, China.

出版信息

Chin J Cancer Res. 2025 Apr 30;37(2):119-137. doi: 10.21147/j.issn.1000-9604.2025.02.01.

Abstract

OBJECTIVE

Radiotherapy (RT) is the definitive treatment for stage II nasopharyngeal carcinoma (NPC), which is classified as stages IA and IB in the latest ninth edition of American Joint Committee on Cancer (AJCC)/Union for International Cancer Control (UICC). A crucial question is whether concurrent chemo-radiotherapy (CCRT) could derive additional benefits to this recent "down-staging" subgroup of NPC patients. This study aimed to interrogate clinical and radiomic features for predicting 5-year progression-free survival (PFS) of stage II NPC treated with RT alone or CCRT.

METHODS

Imaging and clinical data of 166 stage II NPC (eighth edition AJCC/UICC) patients were collected. Data were allocated into training, internal testing, and external testing sets. For each case, 851 radiomic features were extracted and 10 clinical features were collected. Radiomic and clinical features most associated with the 5-year PFS were selected separately. A combined model was developed using multivariate logistic regression by integrating selected features and treatment option to predict 5-year PFS. Model performances were evaluated by area under the receiver operating curve (AUC), prediction accuracy, and decision curve analysis. Survival analyses including Kaplan-Meier analysis and Cox regression model were performed for further analysis.

RESULTS

Thirteen radiomic features, three clinical features, and treatment option were considered for model development. The combined model showed higher prognostic performance than using either. For the merged testing set (internal and external testing sets), AUC is 0.76 (combined) . 0.56-0.80 (clinical or radiomic alone) and accuracy is 0.75 (combined) . 0.62-0.73 (clinical or radiomic alone). Kaplan-Meier analysis using the combined model showed significant discrimination in PFS of the predicted low-risk and high-risk groups in the training and internal testing cohorts (P<0.05).

CONCLUSIONS

Integrating with clinical and radiomic features could provide prognostic information on 5-year PFS under either treatment regimen, guiding individualized decisions of chemotherapy based on the predicted treatment outcome.

摘要

目的

放射治疗(RT)是II期鼻咽癌(NPC)的确定性治疗方法,在最新的第九版美国癌症联合委员会(AJCC)/国际癌症控制联盟(UICC)中,该期被分类为IA期和IB期。一个关键问题是,同步放化疗(CCRT)是否能给这一近期“降期”的NPC患者亚组带来额外益处。本研究旨在探究临床和影像组学特征,以预测单纯放疗或CCRT治疗的II期NPC患者的5年无进展生存期(PFS)。

方法

收集了166例II期NPC(AJCC/UICC第八版)患者的影像和临床数据。数据被分配到训练集、内部测试集和外部测试集。对于每个病例,提取了851个影像组学特征,并收集了10个临床特征。分别选择与5年PFS最相关的影像组学和临床特征。通过整合选定的特征和治疗方案,使用多变量逻辑回归开发了一个联合模型,以预测5年PFS。通过受试者工作特征曲线下面积(AUC)、预测准确性和决策曲线分析来评估模型性能。进行了包括Kaplan-Meier分析和Cox回归模型在内的生存分析以作进一步分析。

结果

模型开发考虑了13个影像组学特征、3个临床特征和治疗方案。联合模型显示出比单独使用任何一种方法更高的预后性能。对于合并测试集(内部和外部测试集),AUC为0.76(联合)>0.56 - 0.80(单独临床或影像组学),准确性为0.75(联合)>0.62 - 0.73(单独临床或影像组学)。使用联合模型的Kaplan-Meier分析显示,在训练和内部测试队列中,预测的低风险和高风险组在PFS方面有显著差异(P<0.05)。

结论

整合临床和影像组学特征可以为两种治疗方案下的5年PFS提供预后信息,根据预测的治疗结果指导化疗的个体化决策。

相似文献

2
美国癌症联合委员会(AJCC)和国际抗癌联盟(UICC)鼻咽癌TNM分期分类第九版。
JAMA Oncol. 2024 Oct 10;10(12):1627-35. doi: 10.1001/jamaoncol.2024.4354.
4
基于德尔塔磁共振成像放射组学特征的列线图预测局部晚期鼻咽癌诱导化疗后的长期疗效。
Oral Oncol. 2024 Oct;157:106987. doi: 10.1016/j.oraloncology.2024.106987. Epub 2024 Aug 10.
6
鼻咽癌患者的早期风险评估:基于磁共振成像的影像组学的附加预后价值
Transl Oncol. 2021 Oct;14(10):101180. doi: 10.1016/j.tranon.2021.101180. Epub 2021 Jul 15.
7
中国接受根治性(放化疗)的食管鳞癌患者中,AJCC/UICC 第 8 版 TNM 与 JES 第 11 版分期系统的预后预测比较。
J Cancer Res Ther. 2023 Dec 1;19(6):1610-1619. doi: 10.4103/jcrt.jcrt_447_23. Epub 2023 Dec 28.
10
调强放疗后局部晚期老年鼻咽癌患者同期放化疗与单纯放疗的比较:倾向评分匹配队列研究。
Radiother Oncol. 2024 Feb;191:110081. doi: 10.1016/j.radonc.2024.110081. Epub 2024 Jan 5.

本文引用的文献

2
美国癌症联合委员会(AJCC)和国际抗癌联盟(UICC)鼻咽癌TNM分期分类第九版。
JAMA Oncol. 2024 Oct 10;10(12):1627-35. doi: 10.1001/jamaoncol.2024.4354.
3
自适应放疗的现状、挑战和未来展望:鼻咽癌的叙述性综述。
Oral Oncol. 2024 Nov;158:107008. doi: 10.1016/j.oraloncology.2024.107008. Epub 2024 Aug 24.
4
运用决策曲线分析优化临床决策:给临床研究者的见解
Healthcare (Basel). 2023 Aug 10;11(16):2244. doi: 10.3390/healthcare11162244.
5
基于增强 CT 放射组学的模型,用于识别局部晚期鼻咽癌患者接受减量化放化疗的候选者。
Eur Radiol. 2024 Feb;34(2):1302-1313. doi: 10.1007/s00330-023-09987-1. Epub 2023 Aug 18.
6
鼻咽癌患者严重化疗诱导性血小板减少症的发生率、后果和预测因素。
Cancer Med. 2023 Jul;12(13):14084-14093. doi: 10.1002/cam4.6062. Epub 2023 May 22.
7
用于预测鼻咽癌肿瘤治疗反应的体素内不相干运动放射组学列线图
Transl Oncol. 2023 May;31:101648. doi: 10.1016/j.tranon.2023.101648. Epub 2023 Mar 9.
8
应用超声放射组学分析诊断鼻咽癌患者的颈部淋巴结转移。
Eur Radiol. 2023 Feb;33(2):774-783. doi: 10.1007/s00330-022-09122-6. Epub 2022 Sep 7.
9
基于 PET/MRI 影像组学和半定量参数的鼻咽癌诊断模型。
BMC Med Imaging. 2022 Aug 29;22(1):150. doi: 10.1186/s12880-022-00883-6.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验