Suppr超能文献

稻草衍生的基于石墨烯-二氧化硅的纳米复合材料及其在改善共发酵微生物酶生产和功能稳定性方面的应用。

Rice straw derived graphene-silica based nanocomposite and its application in improved co-fermentative microbial enzyme production and functional stability.

作者信息

Asiri Mohammed, Srivastava Neha, Singh Rajeev, Al Ali Amer, Tripathi Subhash C, Alqahtani Abdulaziz, Saeed Mohd, Srivastava Manish, Rai Ashutosh Kumar, Gupta Vijai Kumar

机构信息

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.

Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.

出版信息

Sci Total Environ. 2023 Jun 10;876:162765. doi: 10.1016/j.scitotenv.2023.162765. Epub 2023 Mar 9.

Abstract

Cellulases are the one of the most highly demanded industrial biocatalysts due to their versatile applications, such as in the biorefinery industry. However, relatively poor efficiency and high production costs are included as the key industrial constraints that hinder enzyme production and utilization at economic scale. Furthermore, the production and functional efficiency of the β-glucosidase (BGL) enzyme is usually found to be relatively low among the cellulase cocktail produced. Thus, the current study focuses on fungi-mediated improvement of BGL enzyme in the presence of a rice straw-derived graphene-silica-based nanocomposite (GSNCs), which has been characterized using various techniques to analyze its physicochemical properties. Under optimized conditions of solid-state fermentation (SSF), co-fermentation using co-cultured cellulolytic enzyme has been done, and maximum enzyme production of 42 IU/gds FP, 142 IU/gds BGL, and 103 IU/gds EG have been achieved at a 5 mg concentration of GSNCs. Moreover, at a 2.5 mg concentration of nanocatalyst, the BGL enzyme showed its thermal stability at 60°C and 70 °C by holding its half-life relative activity for 7 h, while the same enzyme demonstrated pH stability at pH 8.0 and 9.0 for the 10 h. This thermoalkali BGL enzyme might be useful for the long-term bioconversion of cellulosic biomass into sugar.

摘要

纤维素酶是工业上需求最大的生物催化剂之一,因为其应用广泛,比如在生物精炼行业。然而,效率相对较低和生产成本较高是阻碍酶在经济规模上生产和利用的关键产业限制因素。此外,在产生的纤维素酶混合物中,通常发现β-葡萄糖苷酶(BGL)的生产效率和功能效率相对较低。因此,当前的研究聚焦于在稻草衍生的基于石墨烯-二氧化硅的纳米复合材料(GSNCs)存在的情况下,利用真菌提高BGL酶的性能,该纳米复合材料已通过各种技术进行表征以分析其物理化学性质。在固态发酵(SSF)的优化条件下,使用共培养的纤维素分解酶进行了共发酵,在GSNCs浓度为5mg时,实现了最高酶产量,分别为42IU/gds FP、142IU/gds BGL和103IU/gds EG。此外,在纳米催化剂浓度为2.5mg时,BGL酶在60°C和70°C下表现出热稳定性,其相对活性半衰期保持7小时,而相同的酶在pH 8.0和9.0下10小时表现出pH稳定性。这种热碱性BGL酶可能有助于将纤维素生物质长期生物转化为糖。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验