Suppr超能文献

SAPS II 的一级定制研究,使用挪威重症监护和大流行登记处(NIPaR)数据。

A first-level customization study of SAPS II with Norwegian Intensive Care and Pandemic Registry (NIPaR) data.

机构信息

Department of Anaesthesia and Intensive Care, Haukeland University Hospital, Bergen, Norway.

Norwegian Intensive Care and Pandemic Registry, Haukeland University Hospital, Bergen, Norway.

出版信息

Acta Anaesthesiol Scand. 2023 Jul;67(6):772-778. doi: 10.1111/aas.14229. Epub 2023 Mar 17.

Abstract

BACKGROUND

Severity scores and mortality prediction models (MPMs) are important tools for benchmarking and stratification in the intensive care unit (ICU) and need to be regularly updated using data from a local and contextual cohort. Simplified acute physiology score II (SAPS II) is widely used in European ICUs.

METHODS

A first-level customization was performed on the SAPS II model using data from the Norwegian Intensive Care and Pandemic Registry (NIPaR). Two previous SAPS II models (Model A: the original SAPS II model and Model B: a SAPS II model based on NIPaR data from 2008 to 2010) were compared to the new Model C. Model C was based on patients from 2018 to 2020 (corona virus disease 2019 patients omitted; n = 43,891), and its performances (calibration, discrimination, and uniformity of fit) compared to the previous models (Model A and Model B).

RESULTS

Model C was better calibrated than Model A with a Brier score 0.132 (95% confidence interval 0.130-0.135) versus 0.143 (95% confidence interval 0.141-0.146). The Brier score for Model B was 0.133 (95% confidence interval 0.130-0.135). In the Cox's calibration regression and for both Model C and Model B but not for Model A. Uniformity of fit was similar for Model B and for Model C, both better than for Model A, across age groups, sex, length of stay, type of admission, hospital category, and days on respirator. The area under the receiver operating characteristic curve was 0.79 (95% confidence interval 0.79-0.80), showing acceptable discrimination.

CONCLUSIONS

The observed mortality and corresponding SAPS II scores have significantly changed during the last decades and an updated MPM is superior to the original SAPS II. However, proper external validation is required to confirm our findings. Prediction models need to be regularly customized using local datasets in order to optimize their performances.

摘要

背景

严重程度评分和死亡率预测模型(MPMs)是重症监护病房(ICU)中用于基准测试和分层的重要工具,需要使用来自当地和背景队列的数据定期进行更新。简化急性生理学评分 II(SAPS II)在欧洲 ICU 中得到广泛应用。

方法

使用来自挪威重症监护和大流行登记处(NIPaR)的数据对 SAPS II 模型进行了一级定制。将两个之前的 SAPS II 模型(模型 A:原始 SAPS II 模型和模型 B:基于 2008 年至 2010 年 NIPaR 数据的 SAPS II 模型)与新模型 C 进行了比较。模型 C 基于 2018 年至 2020 年的患者(剔除 2019 年冠状病毒病患者;n=43891),并比较了其性能(校准、区分和拟合均匀性)与之前的模型(模型 A 和模型 B)。

结果

与模型 A(Brier 评分 0.143,95%置信区间 0.141-0.146)相比,模型 C 的校准效果更好,Brier 评分 0.132(95%置信区间 0.130-0.135)。模型 B 的 Brier 评分也为 0.133(95%置信区间 0.130-0.135)。在 Cox 的校准回归中,模型 C 和模型 B 都表现出了这种情况,但模型 A 则不然。拟合均匀性在模型 B 和模型 C 之间相似,且均优于模型 A,在年龄组、性别、住院时间、入院类型、医院类别和使用呼吸机的天数等方面都有表现。受试者工作特征曲线下面积为 0.79(95%置信区间 0.79-0.80),表明具有可接受的区分度。

结论

在过去几十年中,观察到的死亡率和相应的 SAPS II 评分发生了显著变化,更新后的 MPM 优于原始 SAPS II。然而,需要进行适当的外部验证来证实我们的发现。为了优化其性能,预测模型需要使用本地数据集定期进行定制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验