Suppr超能文献

基于卷积神经网络的锥形束 CT 图像上颌牙槽骨自动分割。

Convolutional neural network-based automated maxillary alveolar bone segmentation on cone-beam computed tomography images.

机构信息

OMFS IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.

Department of Oral & Maxillofacial Surgery, University Hospitals Leuven, KU Leuven, Leuven, Belgium.

出版信息

Clin Oral Implants Res. 2023 Jun;34(6):565-574. doi: 10.1111/clr.14063. Epub 2023 Mar 23.

Abstract

OBJECTIVES

To develop and assess the performance of a novel artificial intelligence (AI)-driven convolutional neural network (CNN)-based tool for automated three-dimensional (3D) maxillary alveolar bone segmentation on cone-beam computed tomography (CBCT) images.

MATERIALS AND METHODS

A total of 141 CBCT scans were collected for performing training (n = 99), validation (n = 12), and testing (n = 30) of the CNN model for automated segmentation of the maxillary alveolar bone and its crestal contour. Following automated segmentation, the 3D models with under- or overestimated segmentations were refined by an expert for generating a refined-AI (R-AI) segmentation. The overall performance of CNN model was assessed. Also, 30% of the testing sample was randomly selected and manually segmented to compare the accuracy of AI and manual segmentation. Additionally, the time required to generate a 3D model was recorded in seconds (s).

RESULTS

The accuracy metrics of automated segmentation showed an excellent range of values for all accuracy metrics. However, the manual method (95% HD: 0.20 ± 0.05 mm; IoU: 95% ± 3.0; DSC: 97% ± 2.0) showed slightly better performance than the AI segmentation (95% HD: 0.27 ± 0.03 mm; IoU: 92% ± 1.0; DSC: 96% ± 1.0). There was a statistically significant difference of the time-consumed among the segmentation methods (p < .001). The AI-driven segmentation (51.5 ± 10.9 s) was 116 times faster than the manual segmentation (5973.3 ± 623.6 s). The R-AI method showed intermediate time-consumed (1666.7 ± 588.5 s).

CONCLUSION

Although the manual segmentation showed slightly better performance, the novel CNN-based tool also provided a highly accurate segmentation of the maxillary alveolar bone and its crestal contour consuming 116 times less than the manual approach.

摘要

目的

开发并评估一种新的基于人工智能(AI)的卷积神经网络(CNN)工具,用于对锥形束计算机断层扫描(CBCT)图像中的上颌牙槽骨进行自动三维(3D)分割。

材料和方法

共收集了 141 例 CBCT 扫描用于训练(n=99)、验证(n=12)和测试(n=30)的自动分割上颌牙槽骨及其嵴轮廓的 CNN 模型。在自动分割后,通过专家对分割不足或过度的 3D 模型进行细化,生成改进-AI(R-AI)分割。评估了 CNN 模型的整体性能。另外,随机选择测试样本的 30%进行手动分割,以比较 AI 和手动分割的准确性。此外,还记录了生成 3D 模型所需的时间(秒)。

结果

自动分割的准确度指标对于所有准确度指标均显示出极佳的范围值。然而,手动方法(95%HD:0.20±0.05mm;IoU:95%±3.0;DSC:97%±2.0)的性能略优于 AI 分割(95%HD:0.27±0.03mm;IoU:92%±1.0;DSC:96%±1.0)。分割方法之间的时间消耗存在统计学上的显著差异(p<0.001)。AI 驱动的分割(51.5±10.9s)比手动分割(5973.3±623.6s)快 116 倍。R-AI 方法的时间消耗居中(1666.7±588.5s)。

结论

虽然手动分割的性能略好,但新型基于 CNN 的工具也可以高度准确地分割上颌牙槽骨及其嵴轮廓,比手动方法快 116 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验