Kumari Khushbu, Behera Himadri Tanaya, Nayak Priyadarshini Pratikshya, Sinha Adrija, Nandi Aditya, Ghosh Aishee, Saha Utsa, Suar Mrutyunjay, Panda Pritam Kumar, Verma Suresh K, Raina Vishakha
School of Biotechnology, KIIT-DU, Bhubaneswar 751024, India.
Department of Physics and Astronomy (Materials Theory), Uppsala University, 75121, Sweden.
Biomed Pharmacother. 2023 May;161:114493. doi: 10.1016/j.biopha.2023.114493. Epub 2023 Mar 10.
Biosurfactants having surface-active biomolecules have been the cynosure in environment research due to their vast application. However, the lack of information about their low-cost production and detailed mechanistic biocompatibility limits the applicability. The study explores techniques for the production and design of low-cost, biodegradable, and non-toxic biosurfactants from Brevibacterium casei strain LS14 and excavates the mechanistic details of their biomedical properties like antibacterial effects and biocompatibility. Taguchi's design of experiment was used to optimize for enhancing biosurfactant production by optimal factor combinations like Waste glycerol (1%v/v), peptone (1%w/v), NaCl 0.4% (w/v), and pH 6. Under optimal conditions, the purified biosurfactant reduced the surface tension to 35 mN/m from 72.8 mN/m (MSM) and a critical micelle concentration of 25 mg/ml was achieved. Spectroscopic analyses of the purified biosurfactant using Nuclear Magnetic Resonance suggested it as a lipopeptide biosurfactant. The evaluation of mechanistic antibacterial, antiradical, antiproliferative, and cellular effects indicated the efficient antibacterial activity (against Pseudomonas aeruginosa) of biosurfactants due to free radical scavenging activity and oxidative stress. Moreover, the cellular cytotoxicity was estimated by MTT and other cellular assays revealing the phenomenon as the dose-dependent induction of apoptosis due to free radical scavenging with an LC50 of 55.6 ± 2.3 mg/ml.
具有表面活性生物分子的生物表面活性剂因其广泛的应用而成为环境研究的焦点。然而,关于其低成本生产和详细的机械生物相容性的信息匮乏限制了其适用性。本研究探索了从干酪短杆菌菌株LS14生产和设计低成本、可生物降解且无毒的生物表面活性剂的技术,并挖掘了其生物医学特性(如抗菌作用和生物相容性)的机制细节。采用田口实验设计,通过最佳因素组合(如废甘油(1%v/v)、蛋白胨(1%w/v)、NaCl 0.4%(w/v)和pH 6)来优化提高生物表面活性剂的产量。在最佳条件下,纯化后的生物表面活性剂将表面张力从72.8 mN/m(MSM)降低至35 mN/m,并实现了25 mg/ml的临界胶束浓度。使用核磁共振对纯化后的生物表面活性剂进行光谱分析表明其为脂肽生物表面活性剂。对其抗菌、抗自由基、抗增殖和细胞效应机制的评估表明,由于自由基清除活性和氧化应激,生物表面活性剂具有高效的抗菌活性(针对铜绿假单胞菌)。此外,通过MTT和其他细胞实验评估细胞毒性,结果显示该现象是由于自由基清除导致的剂量依赖性凋亡诱导,LC50为55.6±2.3 mg/ml。