Zhang Jinming, Ding Wei, Hampel Uwe
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, Dresden 01328, Germany.
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, Dresden 01328, Germany; Technische Universität Dresden, Institute of Power Engineering, Dresden 01062, Germany.
J Colloid Interface Sci. 2023 Jun 15;640:940-948. doi: 10.1016/j.jcis.2023.03.031. Epub 2023 Mar 8.
When a droplet starts sliding on a solid surface, the droplet-solid friction force develops in a manner comparable to the solid-solid friction force, showing a static regime and a kinetic regime. Today, the kinetic friction force that acts on a sliding droplet is well-characterized. But the mechanism underlying the static friction force is still less understood. Here we hypothesize that we can further draw an analogy between the detailed droplet-solid and solid-solid friction law, i.e., the static friction force is contact area dependent.
We deconstruct a complex surface defect into three primary surface defects (atomic structure, topographical defect, and chemical heterogeneity). Using large-scale Molecular Dynamics simulations, we study the mechanisms of droplet-solid static friction forces induced by primary surface defects.
Three element-wise static friction forces related to primary surface defects are revealed and the corresponding mechanisms for the static friction force are disclosed. We find that the static friction force induced by chemical heterogeneity is contact line length dependent, while the static friction force induced by atomic structure and topographical defect is contact area dependent. Moreover, the latter causes energy dissipation and leads to a wiggle movement of the droplet during the static-kinetic friction transition.
当液滴在固体表面开始滑动时,液滴与固体之间的摩擦力的发展方式与固体与固体之间的摩擦力相似,呈现出静摩擦状态和动摩擦状态。如今,作用于滑动液滴的动摩擦力已得到充分表征。但静摩擦力背后的机制仍不太清楚。在此,我们假设可以进一步类比详细的液滴与固体以及固体与固体之间的摩擦定律,即静摩擦力取决于接触面积。
我们将复杂的表面缺陷解构为三种主要表面缺陷(原子结构、形貌缺陷和化学不均匀性)。使用大规模分子动力学模拟,我们研究了主要表面缺陷引起的液滴与固体之间静摩擦力的机制。
揭示了与主要表面缺陷相关的三种元素级静摩擦力,并揭示了静摩擦力的相应机制。我们发现,由化学不均匀性引起的静摩擦力取决于接触线长度,而由原子结构和形貌缺陷引起的静摩擦力取决于接触面积。此外,后者会导致能量耗散,并在静动摩擦转变过程中导致液滴产生摆动运动。