Suppr超能文献

采用双端信号读取的 45°倾斜硅光电倍增管的相互作用深度正电子发射断层扫描探测器。

Depth-of-interaction positron emission tomography detector with 45° tilted silicon photomultipliers using dual-ended signal readout.

机构信息

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.

Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea.

出版信息

Med Phys. 2023 Jul;50(7):4112-4121. doi: 10.1002/mp.16355. Epub 2023 Mar 24.

Abstract

BACKGROUND

Small-animal positron emission tomography (PET) systems are widely used in molecular imaging research and drug development. There is also growing interest in organ-dedicated clinical PET systems. In these small-diameter PET systems, the measurement of the depth-of-interaction (DOI) of annihilation photons in scintillation crystals allows for the correction of parallax error in PET system, leading to an improvement on the spatial resolution uniformity. The DOI information is also useful for improving the timing resolution of PET system as it enables the correction of DOI-dependent time walk in the arrival time difference measurement of annihilation photon pairs. The dual-ended readout scheme is one of the most widely investigated DOI measurement methods, which collects visible photons using a pair of photosensors located at both ends of the scintillation crystal. Although the dual-ended readout allows for simple and accurate DOI estimation, it requires twice the number of photosensors compared to the single-ended readout scheme.

PURPOSE

To effectively reduce the number of photosensors in a dual-ended readout scheme, we propose a novel PET detector configuration that employs 45° tilted and sparsely arranged silicon photomultipliers (SiPMs). In this configuration, the angle between the scintillation crystal and SiPM is 45°. Therefore, and thus, the diagonal of the scintillation crystal matches one of the lateral sides of the SiPM. Accordingly, it allows for the use of SiPM device larger than the scintillation crystal, thereby improving light collection efficiency with a higher fill factor and reducing SiPM quantity. In addition, all scintillation crystals can achieve more uniform performance than other dual-ended readout methods with a sparse SiPM arrangement because 50% of the scintillation crystal cross section is commonly in contact with the SiPM.

METHODS

To demonstrate the feasibility of our proposed concept, we implemented a PET detector that employs a 4 4 LSO block with a single crystal dimension of 3.03 × 3.03 × 20 mm and a 45° tilted SiPM array. The 45° tilted SiPM array consists of 2 × 3 SiPM elements at the top ("Top SiPM") and 3 × 2 SiPM elements at the bottom ("Bottom SiPM"). Each crystal element of the 4 × 4 LSO block is optically coupled with each quarter section of the Top SiPM and Bottom SiPM pair. To characterize the performance of the PET detector, the energy, DOI, and timing resolution were measured for all 16 crystals. The energy data was obtained by summing all the charges from the Top SiPMs and Bottom SiPMs, and the DOI resolution was measured by irradiating the side of the crystal block at five different depths (2, 6, 10, 14, and 18 mm). The timing was estimated by averaging the arrival time of the annihilation photons measured at the Top SiPMs and Bottom SiPMs (Method 1). The DOI-dependent time-walk effect was further corrected by using DOI information and statistical variations in the trigger times at the Top SiPMs and Bottom SiPMs (Method 2).

RESULTS

The average DOI resolution of the proposed PET detector was 2.5 mm, thereby resolving the DOI at five different depths, and the average energy resolution was 16% full width at half maximum (FWHM). When Methods 1 and 2 were applied, the coincidence timing resolutions were 448 and 411 ps FWHM, respectively.

CONCLUSIONS

We expect that our novel low-cost PET detector design with 45° tilted SiPMs and a dual-ended readout scheme would be a suitable solution for constructing a high-resolution PET system with DOI encoding capability.

摘要

背景

小动物正电子发射断层扫描(PET)系统广泛应用于分子成像研究和药物开发。人们对专门用于器官的临床 PET 系统也越来越感兴趣。在这些小直径 PET 系统中,闪烁晶体中湮没光子的深度交互(DOI)的测量允许校正 PET 系统中的视差误差,从而提高空间分辨率均匀性。DOI 信息对于提高 PET 系统的定时分辨率也很有用,因为它可以校正湮没光子对到达时间差测量中的与 DOI 相关的时间行走。双端读出方案是最广泛研究的 DOI 测量方法之一,它使用位于闪烁晶体两端的一对光电传感器来收集可见光子。虽然双端读出允许简单和准确的 DOI 估计,但与单端读出方案相比,它需要两倍数量的光电传感器。

目的

为了有效减少双端读出方案中的光电传感器数量,我们提出了一种新颖的 PET 探测器配置,该配置使用 45°倾斜和稀疏排列的硅光电倍增管(SiPM)。在这种配置中,闪烁晶体与 SiPM 之间的角度为 45°。因此,以及因此,闪烁晶体的对角线与 SiPM 的一个横向边匹配。因此,它允许使用大于闪烁晶体的 SiPM 设备,从而提高光收集效率,具有更高的填充因子并减少 SiPM 数量。此外,由于 50%的闪烁晶体横截面通常与 SiPM 接触,因此与其他双端读出方法相比,所有闪烁晶体都可以实现更均匀的性能,稀疏的 SiPM 排列。

方法

为了证明我们提出的概念的可行性,我们实现了一个 PET 探测器,该探测器使用一个 4×4 的 LSO 块,每个晶体的尺寸为 3.03×3.03×20mm,以及一个 45°倾斜的 SiPM 阵列。45°倾斜的 SiPM 阵列由顶部的 2×3 个 SiPM 元件(“Top SiPM”)和底部的 3×2 个 SiPM 元件(“Bottom SiPM”)组成。4×4 的 LSO 块的每个晶体元件都与 Top SiPM 和 Bottom SiPM 对的每四分之一部分光学耦合。为了表征 PET 探测器的性能,对所有 16 个晶体的能量、DOI 和定时分辨率进行了测量。能量数据是通过对 Top SiPMs 和 Bottom SiPMs 的所有电荷求和获得的,DOI 分辨率通过在晶体块的侧面照射五个不同的深度(2、6、10、14 和 18mm)来测量。定时通过平均在 Top SiPMs 和 Bottom SiPMs 处测量的湮没光子的到达时间来估计(方法 1)。通过使用 DOI 信息和在 Top SiPMs 和 Bottom SiPMs 处的触发时间的统计变化进一步校正 DOI 相关的时间行走效应(方法 2)。

结果

所提出的 PET 探测器的平均 DOI 分辨率为 2.5mm,从而解析了五个不同深度的 DOI,平均能量分辨率为 16%全宽半最大值(FWHM)。当应用方法 1 和 2 时,符合时间分辨率分别为 448 和 411ps FWHM。

结论

我们期望我们具有新颖的低成本 PET 探测器设计,带有 45°倾斜的 SiPM 和双端读出方案,将成为具有 DOI 编码能力的高分辨率 PET 系统的合适解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验