Suppr超能文献

基于监督机器学习的微流控阻抗流式细胞术用于提高粒径测定的准确性。

Supervised machine learning in microfluidic impedance flow cytometry for improved particle size determination.

机构信息

BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Max Planck - University of Twente Center for Complex Fluid Dynamics, University of Twente, The Netherlands.

Chemical Engineering TU Delft, Delft, The Netherlands.

出版信息

Cytometry A. 2023 Mar;103(3):221-226. doi: 10.1002/cyto.a.24679. Epub 2022 Aug 18.

Abstract

The assessment of particle and cell size in electrical microfluidic flow cytometers has become common practice. Nevertheless, in flow cytometers with coplanar electrodes accurate determination of particle size is difficult, owing to the inhomogeneous electric field. Pre-defined signal templates and compensation methods have been introduced to correct for this positional dependence, but are cumbersome when dealing with irregular signal shapes. We introduce a simple and accurate post-processing method without the use of pre-defined signal templates and compensation functions using supervised machine learning. We implemented a multiple linear regression model and show an average reduction of the particle diameter variation by 37% with respect to an earlier processing method based on a feature extraction algorithm and compensation function. Furthermore, we demonstrate its application in flow cytometry by determining the size distribution of a population of small (4.6 ± 0.9 μm) and large (5.9 ± 0.8 μm) yeast cells. The improved performance of this coplanar, two electrode chip enables precise cell size determination in easy to fabricate impedance flow cytometers.

摘要

在电微流控流式细胞仪中评估颗粒和细胞大小已成为常规做法。然而,在具有共面电极的流式细胞仪中,由于电场不均匀,准确确定颗粒大小是困难的。已经引入了预定义的信号模板和补偿方法来纠正这种位置依赖性,但在处理不规则信号形状时很麻烦。我们引入了一种简单而准确的后处理方法,无需使用预定义的信号模板和补偿函数,而是使用监督机器学习。我们实现了一个多元线性回归模型,并显示与基于特征提取算法和补偿函数的早期处理方法相比,颗粒直径变化的平均减少了 37%。此外,我们通过确定小(4.6±0.9μm)和大(5.9±0.8μm)酵母细胞群体的大小分布,展示了其在流式细胞术中的应用。这种改进的共面双电极芯片的性能使得在易于制造的阻抗流式细胞仪中能够精确地确定细胞大小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验