Suppr超能文献

一种用于微流控阻抗细胞术实时颗粒/细胞特征分析的神经网络方法。

A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry.

机构信息

Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, 22904, USA.

Department of Civil Engineering and Computer Science, University of Rome Tor Vergata, Via del Politecnico 1, 00133, Rome, Italy.

出版信息

Anal Bioanal Chem. 2020 Jun;412(16):3835-3845. doi: 10.1007/s00216-020-02497-9. Epub 2020 Mar 18.

Abstract

Microfluidic applications such as active particle sorting or selective enrichment require particle classification techniques that are capable of working in real time. In this paper, we explore the use of neural networks for fast label-free particle characterization during microfluidic impedance cytometry. A recurrent neural network is designed to process data from a novel impedance chip layout for enabling real-time multiparametric analysis of the measured impedance data streams. As demonstrated with both synthetic and experimental datasets, the trained network is able to characterize with good accuracy size, velocity, and cross-sectional position of beads, red blood cells, and yeasts, with a unitary prediction time of 0.4 ms. The proposed approach can be extended to other device designs and cell types for electrical parameter extraction. This combination of microfluidic impedance cytometry and machine learning can serve as a stepping stone to real-time single-cell analysis and sorting. Graphical Abstract.

摘要

微流控应用,如活性粒子分选或选择性富集,需要能够实时工作的粒子分类技术。在本文中,我们探索了在微流控阻抗细胞术期间使用神经网络对无标记粒子进行快速特征描述。设计了一个递归神经网络来处理来自新颖阻抗芯片布局的数据,以实现对测量的阻抗数据流的实时多参数分析。通过合成数据集和实验数据集的演示,训练后的网络能够很好地准确描述珠子、红细胞和酵母的大小、速度和横截面位置,其单一预测时间为 0.4ms。所提出的方法可以扩展到其他设备设计和细胞类型,以进行电参数提取。这种微流控阻抗细胞术和机器学习的结合可以作为实时单细胞分析和分选的垫脚石。

相似文献

6
Impedance-based viscoelastic flow cytometry.基于阻抗的黏弹流式细胞术。
Electrophoresis. 2019 Mar;40(6):906-913. doi: 10.1002/elps.201800365. Epub 2019 Jan 23.
10

引用本文的文献

7
Advances in current models on neurodegenerative diseases.当前神经退行性疾病模型的进展。
Front Bioeng Biotechnol. 2023 Nov 6;11:1260397. doi: 10.3389/fbioe.2023.1260397. eCollection 2023.

本文引用的文献

5
Real-time impedimetric droplet measurement (iDM).实时阻抗滴测量 (iDM)。
Lab Chip. 2019 Nov 21;19(22):3815-3824. doi: 10.1039/c9lc00641a. Epub 2019 Oct 22.
9
Cell Cytometry: Review and Perspective on Biotechnological Advances.《细胞计数法:生物技术进展回顾与展望》
Front Bioeng Biotechnol. 2019 Jun 18;7:147. doi: 10.3389/fbioe.2019.00147. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验