Nguyen Giang Tien
Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education (HCMUTE) 1 Vo Van Ngan, Thu Duc Ho Chi Minh City 700000 Vietnam
RSC Adv. 2023 Mar 8;13(11):7621-7631. doi: 10.1039/d2ra08134b. eCollection 2023 Mar 1.
Shape-stabilized phase change materials (SSPCMs), adopting polyethylene glycol (PEG) as the phase change material (PCM) confined in fumed silica (FS) as the porous support, and their thermal energy storage properties were thoroughly characterized with varying PEG contents, 60-90 wt%. Given a highly interconnected porous structure and a high porosity (88%), FS offered plenty of cavities to confine a large amount of PEG with interactions such as surface tension, capillary, and interfacial hydrogen bonds (H-bond). The interfacial H-bonds negatively affected the crystallinity of PEG and decreased the thermal energy storage capacity, which could be relieved by a large content of confined PEG. The optimum 80 wt% PEG/FS SSPCM exhibited a high crystallinity of 93.1%, corresponding to a remarkable thermal energy storage capacity of 130.6 J g, and excellent thermal reliability after experiencing 500 melting/crystallization cycles. Moreover, it exhibited a reduced thermal conductivity compared to pure PEG, promoting heat transfer delay during melting and crystallization processes. The 80 wt% PEG/FS SSPCM combined with gypsum effectively retarded the thermal transfer compared to pristine gypsum, indicating the PEG/FS SSPCMs are suitable for potential applications in building thermal management.
形状稳定的相变材料(SSPCMs)采用聚乙二醇(PEG)作为相变材料(PCM),以气相二氧化硅(FS)作为多孔载体对其进行封装。通过改变PEG含量(60 - 90 wt%),对其储热性能进行了全面表征。由于具有高度互连的多孔结构和高孔隙率(88%),FS提供了大量的孔洞来封装大量的PEG,这些PEG通过表面张力、毛细管作用和界面氢键(H键)等相互作用被限制在其中。界面氢键对PEG的结晶度产生负面影响,降低了储热能力,而大量封装的PEG可以缓解这种影响。最佳的80 wt% PEG/FS SSPCM表现出93.1%的高结晶度,对应着130.6 J g的显著储热能力,并且在经历500次熔化/结晶循环后具有出色的热可靠性。此外,与纯PEG相比,它的热导率降低,在熔化和结晶过程中促进了传热延迟。与原始石膏相比,80 wt% PEG/FS SSPCM与石膏结合有效地延缓了热传递,表明PEG/FS SSPCMs适用于建筑热管理的潜在应用。