Gao Ning, Du Jiaoli, Yang Wenbo, Sun Bocun, Li Juncheng, Xia Tian, Li Youbing, Yang Chaolong, Liu Xiaolin
College of Materials Science and Engineering, Chongqing University of Technology 400054 Chongqing China
Chongqing Key Laboratory of Mold Technology 400054 Chongqing China.
RSC Adv. 2024 Aug 2;14(33):24141-24151. doi: 10.1039/d4ra03208j. eCollection 2024 Jul 26.
The exploitation of shape-stabilized phase change materials with high thermal conductivity and energy storage capacity is an effective strategy for improving energy efficiency. In this work, sunflower stem carbon/polyethylene glycol (SS-PEG) and sunflower receptacle carbon/polyethylene glycol (SR-PEG) shape-stabilized phase change materials, utilizing sunflower stem and receptacle biomass carbon with high specific surface area and pore volume obtained by carbonization as frameworks and polyethylene glycol as an energy storage material, were prepared by the vacuum impregnation method. The ability to load polyethylene glycol into the pore structure of carbon materials in different sunflower parts was mainly investigated, and the micro-morphology, compositional structure and thermal properties were characterized and analyzed using SEM, IR spectroscopy, XRD, DSC and TG techniques. The results showed that the carbonized sunflower stems maintained the sieve pore structure, and the carbonized sunflower receptacle was a macroporous structure containing a large number of three-dimensional interconnections. At the same time, the interaction between polyethylene glycol and each carbon material occurred through physisorption. The melting enthalpies of SS-PEG and SR-PEG shape-stabilized phase change materials were 153.4 J g and 171.5 J g, respectively, and the loading rates reached 81.9% and 91.5%, with initial thermal decomposition temperatures ( ) of 344 °C and 368 °C.
开发具有高导热率和储能能力的形状稳定相变材料是提高能源效率的有效策略。在本工作中,通过真空浸渍法制备了向日葵茎碳/聚乙二醇(SS-PEG)和向日葵花托碳/聚乙二醇(SR-PEG)形状稳定相变材料,它们利用通过碳化获得的具有高比表面积和孔体积的向日葵茎和花托生物质碳作为骨架,并以聚乙二醇作为储能材料。主要研究了将聚乙二醇负载到不同向日葵部位碳材料孔结构中的能力,并使用扫描电子显微镜(SEM)、红外光谱(IR光谱)、X射线衍射(XRD)、差示扫描量热法(DSC)和热重分析(TG)技术对微观形态、组成结构和热性能进行了表征和分析。结果表明,碳化后的向日葵茎保持了筛孔结构,碳化后的向日葵花托是一种包含大量三维互连的大孔结构。同时,聚乙二醇与每种碳材料之间通过物理吸附发生相互作用。SS-PEG和SR-PEG形状稳定相变材料的熔化焓分别为153.4 J/g和171.5 J/g,负载率分别达到81.9%和91.5%,初始热分解温度分别为344℃和368℃。