Suppr超能文献

一种用于透明且可重复报告文献检索的建议数据结构。

A suggested data structure for transparent and repeatable reporting of bibliographic searching.

作者信息

Haddaway Neal R, Rethlefsen Melissa L, Davies Melinda, Glanville Julie, McGowan Bethany, Nyhan Kate, Young Sarah

机构信息

Leibniz-Centre for Agricultural Landscape Research (ZALF) Müncheberg Germany.

Africa Centre for Evidence University of Johannesburg Johannesburg South Africa.

出版信息

Campbell Syst Rev. 2022 Nov 23;18(4):e1288. doi: 10.1002/cl2.1288. eCollection 2022 Dec.

Abstract

Academic searching is integral to research activities: (1) searching to retrieve specific information, (2) to expand our knowledge iteratively, (3) and to collate a representative and unbiased selection of the literature. Rigorous searching methods are vital for reliable, repeatable and unbiased searches needed for these second and third forms of searches (exploratory and systematic searching, respectively) that form a core part of evidence syntheses. Despite the broad awareness of the importance of transparency in reporting search activities in evidence syntheses, the importance of searching has been highlighted only recently and has been the explicit focus of reporting guidance (PRISMA-S). Ensuring bibliographic searches are reported in a way that is transparent enough to allow for full repeatability or evaluation is challenging for a number of reasons. Here, we detail these reasons and provide for the first time a standardised data structure for transparent and comprehensive reporting of search histories. This data structure was produced by a group of international experts in informatics and library sciences. We explain how the data structure was produced and describe its components in detail. We also demonstrate its practical applicability in tools designed to support literature review authors and explain how it can help to improve interoperability across tools used to manage literature reviews. We call on the research community and developers of reference and review management tools to embrace the data structure to facilitate adequate reporting of academic searching in an effort to raise the standard of evidence syntheses globally.

摘要

学术检索是研究活动不可或缺的一部分

(1)检索以获取特定信息,(2)反复扩展我们的知识,(3)整理具有代表性且无偏见的文献选集。严谨的检索方法对于这些第二种和第三种检索形式(分别为探索性检索和系统性检索)所需的可靠、可重复且无偏见的检索至关重要,而这两种检索形式构成了证据综合的核心部分。尽管人们普遍意识到在证据综合中报告检索活动时透明度的重要性,但检索的重要性直到最近才得到强调,并且一直是报告指南(PRISMA-S)明确关注的焦点。由于多种原因,确保以足够透明的方式报告书目检索,以便能够进行完全重复或评估具有挑战性。在此,我们详细阐述这些原因,并首次提供一种标准化的数据结构,用于透明且全面地报告检索历史。这种数据结构是由一群信息学和图书馆学领域的国际专家制定的。我们解释了数据结构是如何产生的,并详细描述了其组成部分。我们还展示了它在旨在支持文献综述作者的工具中的实际适用性,并解释了它如何有助于提高用于管理文献综述的工具之间的互操作性。我们呼吁研究界以及参考文献和综述管理工具的开发者采用这种数据结构,以促进对学术检索的充分报告,从而提高全球证据综合的标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8980/9682961/4e59eaaa2672/CL2-18-e1288-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验