Suppr超能文献

超声人工智能对早孕期胎盘特征预测妊娠期糖尿病的价值。

Predictive value of ultrasonic artificial intelligence in placental characteristics of early pregnancy for gestational diabetes mellitus.

机构信息

Department of Ultrasound, Guangzhou Red Cross Hospital (Guangzhou Red Cross Hospital of Jinan University), GuangZhou, China.

Department of Ultrasound, Tianhe District Maternal and Child Hospital of Guangzhou, GuangZhou, China.

出版信息

Front Endocrinol (Lausanne). 2024 Mar 13;15:1344666. doi: 10.3389/fendo.2024.1344666. eCollection 2024.

Abstract

BACKGROUND

To explore the predictive value of placental features in early pregnancy for gestational diabetes mellitus (GDM) using deep and radiomics-based machine learning (ML) applied to ultrasound imaging (USI), and to develop a nomogram in conjunction with clinical features.

METHODS

This retrospective multicenter study included 415 pregnant women at 11-13 weeks of gestation from two institutions: the discovery group from center 1 (n=305, control group n=166, GDM group n=139), and the independent validation cohort (n=110, control group n=57, GDM group n=53) from center 2. The 2D USI underwent pre-processed involving normalization and resampling. Subsequently, the study performed screening of radiomics features with Person correlation and mutual information methods. An RBF-SVM model based on radiomics features was constructed using the five-fold cross-validation method. Resnet-50 as the backbone network was employed to learn the region of interest and constructed a deep convolutional neural network (DLCNN) from scratch learning. Clinical variables were screened using one-way logistic regression, with P<0.05 being the threshold for statistical significance, and included in the construction of the clinical model. Nomogram was built based on ML model, DLCNN and clinical models. The performance of nomogram was assessed by calibration curves, area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA).

RESULTS

The AUCs for the ML model in the discovery cohort and independent validation cohort were 0.91 (0.88-0.94) and 0.86 (0.79-0.93), respectively. And 0.65 (0.59-0.71), 0.69 (0.59-0.79) for the DLCNN, 0.66 (0.59-0.72), 0.66 (0.55-0.76) for the clinical model, respectively. The nomogram exhibited the highest performance with AUCs of 0.93 (0.90-0.95) and 0.88 (0.81-0.94) The receiver operating characteristic curve (ROC) proved the superiority of the nomogram of clinical utility, and calibration curve showed the goodness of fit of the model. The DCA curve indicated that the nomogram outperformed other models in terms of net patient benefit.

CONCLUSIONS

The study emphasized the intrinsic relationship between early pregnancy placental USI and the development of GDM. The use of nomogram holds potential for clinical applications in predicting the development of GDM.

摘要

背景

本研究旨在利用深度和基于放射组学的机器学习(ML)应用于超声成像(USI),探索早孕胎盘特征对妊娠期糖尿病(GDM)的预测价值,并结合临床特征开发一个列线图。

方法

本回顾性多中心研究纳入了来自两个机构的 415 名 11-13 周妊娠的孕妇:中心 1 的发现组(n=305,对照组 n=166,GDM 组 n=139)和中心 2 的独立验证队列(n=110,对照组 n=57,GDM 组 n=53)。2D USI 经过预处理,包括归一化和重采样。然后,研究使用 Person 相关性和互信息方法筛选放射组学特征。使用五重交叉验证方法构建基于放射组学特征的 RBF-SVM 模型。使用 Resnet-50 作为骨干网络从头开始学习感兴趣区域,并构建一个深度卷积神经网络(DLCNN)。使用单因素逻辑回归筛选临床变量,以 P<0.05 为统计学意义的阈值,并将其纳入临床模型的构建中。基于 ML 模型、DLCNN 和临床模型构建列线图。通过校准曲线、受试者工作特征曲线(AUC)下面积和决策曲线分析(DCA)评估列线图的性能。

结果

在发现队列和独立验证队列中,ML 模型的 AUC 分别为 0.91(0.88-0.94)和 0.86(0.79-0.93),而 DLCNN 的 AUC 分别为 0.65(0.59-0.71)、0.69(0.59-0.79),临床模型的 AUC 分别为 0.66(0.59-0.72)、0.66(0.55-0.76)。列线图的性能最高,其 AUC 分别为 0.93(0.90-0.95)和 0.88(0.81-0.94)。ROC 曲线证明了列线图临床实用性的优越性,校准曲线显示了模型的拟合度。DCA 曲线表明,在净患者获益方面,列线图优于其他模型。

结论

本研究强调了早孕胎盘 USI 与 GDM 发展之间的内在关系。列线图的应用具有预测 GDM 发展的临床应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c70b/10965593/0d8f00963018/fendo-15-1344666-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验