Khatib Tala O, Amanso Angelica M, Pedro Brian, Knippler Christina M, Summerbell Emily R, Zohbi Najdat M, Konen Jessica M, Mouw Janna K, Marcus Adam I
Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, USA.
Winship Cancer Institute of Emory University, Atlanta, Georgia, USA.
bioRxiv. 2023 Mar 1:2023.02.28.530493. doi: 10.1101/2023.02.28.530493.
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for or studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.
人们已经采用了许多技术来解构在正常和患病细胞群体中观察到的异质性,包括单细胞RNA测序、杂交和流式细胞术。虽然这些方法彻底改变了我们对异质性的理解,但单独使用它们无法将生理相关活细胞状态下的表型信息与分子图谱关联起来。无法将诸如侵袭性、细胞间相互作用和空间定位变化等历史活细胞表型与多组学数据整合,这在理解细胞异质性方面造成了差距。我们试图通过运用实验室技术设计一个详细的方案来解决这一差距,该方案称为时空基因组学和细胞分析(SaGA),用于基于精确成像的表型不同的活细胞的选择、分离和扩增。我们从稳定表达光转换荧光蛋白的细胞开始,利用活细胞共聚焦显微镜对显示感兴趣表型的用户定义的单个细胞或一组细胞进行光转换。然后将整个细胞群体从其微环境中提取出来,并使用荧光激活细胞分选技术分离出光学突出显示的细胞。然后可以对SaGA分离的细胞进行多组学分析或细胞增殖,以进行后续研究。该方案可以应用于各种条件,为用户特定的研究兴趣创造方案灵活性。SaGA技术非专业人员在一个工作日内即可完成,并能产生一个表型明确的细胞亚群,以便与多组学技术整合。我们设想这种方法能提供多维数据集,探索正常和患病细胞群体中活细胞表型与多组学异质性之间的关系。