Suppr超能文献

一种用于空间多组学分析的活细胞平台,用于分离表型定义明确的亚群。

A live-cell platform to isolate phenotypically defined subpopulations for spatial multi-omic profiling.

机构信息

Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia, United States of America.

Winship Cancer Institute of Emory University, Atlanta, Georgia, United States of America.

出版信息

PLoS One. 2023 Oct 11;18(10):e0292554. doi: 10.1371/journal.pone.0292554. eCollection 2023.

Abstract

Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.

摘要

已经采用了许多技术来解构正常和患病细胞群体中观察到的异质性,包括单细胞 RNA 测序、原位杂交和流式细胞术。虽然这些方法彻底改变了我们对异质性的理解,但它们彼此孤立,无法将生理相关活细胞状态下的表型信息与分子谱相关联。这种无法将活细胞表型(如侵袭性、细胞间相互作用和空间定位变化)与多组学数据整合的能力,造成了对细胞异质性理解上的差距。我们试图通过采用实验室技术来设计一个详细的方案来解决这个差距,该方案称为时空基因组和细胞分析 (SaGA),用于基于精确成像的选择、分离和扩展表型不同的活细胞。该方案要求细胞表达光可转换荧光蛋白,并使用活细胞共聚焦显微镜将用户定义的单个细胞或一组显示出感兴趣表型的细胞光转换。然后,将整个细胞群体从其微环境中提取出来,并使用荧光激活细胞分选对光强调选的细胞进行分离。SaGA 分离的细胞可以进行多组学分析或细胞增殖,用于体外或体内研究。该方案可以应用于多种条件,为用户特定的研究兴趣创造了方案灵活性。SaGA 技术可以由非专家在一个工作日内完成,可获得表型定义明确的细胞亚群,以与多组学技术集成。我们设想这种方法可以提供多维数据集,探索正常和患病细胞群体中活细胞表型和多组学异质性之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5453/10566726/d413a9331cc1/pone.0292554.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验