Suppr超能文献

电视辅助胸腔镜解剖性肺切除术后的持续性漏气:基于意大利电视辅助胸腔镜手术(VATS)组登记数据的临床预测模型,一种机器学习方法

Prolonged air leak after video-assisted thoracic anatomical pulmonary resections: a clinical predicting model based on data from the Italian VATS group registry, a machine learning approach.

作者信息

Divisi Duilio, Pipitone Marco, Perkmann Reinhold, Bertolaccini Luca, Curcio Carlo, Baldinelli Francesco, Crisci Roberto, Zaraca Francesco

机构信息

Department of Life, Health and Environmental Sciences, Thoracic Surgery Unit, University of L'Aquila, L'Aquila, Italy.

Department of Vascular and Thoracic Surgery, Central Hospital, Bolzano, Italy.

出版信息

J Thorac Dis. 2023 Feb 28;15(2):849-857. doi: 10.21037/jtd-21-1484. Epub 2022 Jan 13.

Abstract

BACKGROUND

Prolonged air leak (PAL) is a frequent complication after lung resection surgery and has a high clinical and economic impact. A useful risk predictor model can help recognize those patients who might benefit from additional preventive procedures. Currently, no risk model has sufficient discriminatory capacity to be used in common clinical practice. The aim of this study is to identify predictive risk factors for PAL after video-assisted thoracoscopic surgery (VATS) anatomical resections in the Italian VATS group database and to evaluate their clinical and statistical performance.

METHODS

We processed data collected in the second edition of the Italian VATS group registry. It includes patients that underwent a thoracoscopic anatomical resection for benign or malignant diseases, between November 2015 and December 2020. We used recursive feature elimination (RFE), using a backward selection process, to find the optimal combination of predictors. The study population was randomly split based on the outcome into a derivation (80%) and an internal validation cohort (20%). Discrimination of the model was measured using the area under the curve, or C-statistic. Calibration was displayed using a calibration plot and was measured using Emax and Eavg, the maximum and the average difference in predicted versus loess calibrated probabilities.

RESULTS

A cohort of 6,236 patients was eligible for the study after application of the exclusion criteria. Five-day PAL rate in this patient cohort was 11.3%. For the construction of our predictive model, we used both preoperative and intraoperative variables, with a total of 320 variables. The presence of variables with missing values greater than 5% led to 120 remaining predictors. RFE algorithm recommended 8 features for the model that are relevant in predicting the target variable.

CONCLUSIONS

We confirmed significant prognostic risk factors for the prediction of PAL: decreased DLCO/VA ratio, longer duration of surgery, male sex, the need for adhesiolysis, COPD, and right side. We identified middle lobe resections and ground glass opacity as protective factors. After internal validation, a C statistic of 0.63 was revealed, which is too low to generate a reliable score in clinical practice.

摘要

背景

持续性漏气(PAL)是肺切除术后常见的并发症,具有较高的临床和经济影响。一个有用的风险预测模型有助于识别那些可能从额外预防措施中获益的患者。目前,尚无风险模型具有足够的鉴别能力用于常规临床实践。本研究的目的是在意大利电视辅助胸腔镜手术(VATS)组数据库中识别VATS解剖切除术后PAL的预测风险因素,并评估其临床和统计学性能。

方法

我们处理了意大利VATS组登记册第二版中收集的数据。该登记册包括2015年11月至2020年12月期间因良性或恶性疾病接受胸腔镜解剖切除的患者。我们使用递归特征消除(RFE),通过向后选择过程,找到预测变量的最佳组合。根据结果将研究人群随机分为推导队列(80%)和内部验证队列(20%)。使用曲线下面积或C统计量来衡量模型的鉴别能力。使用校准图展示校准情况,并使用Emax和Eavg(预测概率与局部加权回归校准概率的最大和平均差异)来衡量。

结果

应用排除标准后,6236例患者符合研究条件。该患者队列的5天PAL发生率为11.3%。为构建我们的预测模型,我们使用了术前和术中变量,共320个变量。缺失值大于5%的变量存在导致剩余120个预测变量。RFE算法为模型推荐了8个与预测目标变量相关的特征。

结论

我们证实了预测PAL的显著预后风险因素:DLCO/VA比值降低、手术时间延长、男性、需要进行粘连松解、慢性阻塞性肺疾病(COPD)和右侧。我们确定中叶切除和磨玻璃影为保护因素。内部验证后,C统计量为0.63,在临床实践中该值过低,无法生成可靠的评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e597/9992572/ed296a57288b/jtd-15-02-849-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验