Suppr超能文献

步态分析中使用动态时间规整的最优规整路径进行归一化及分类分析的可能性。

Normalization and possibility of classification analysis using the optimal warping paths of dynamic time warping in gait analysis.

作者信息

Lee Hyun-Seob

机构信息

Department of Physical Education, Graduate School of Education, Korea University, Seoul, Korea.

出版信息

J Exerc Rehabil. 2023 Feb 23;19(1):85-91. doi: 10.12965/jer.2244590.295. eCollection 2023 Feb.

Abstract

The purpose of this study was to verify classification performance and the difference analysis between gender using optimal warping paths of dynamic time warping (DTW) and to examine the usefulness of root mean square error (RMSE) represented by the perpendicular distance from the optimal warping path to the diagonal. A 3-dimensional motion analysis experiment was performed with 24 healthy adults (male=12, female=12) in their 20s of age without gait-related diseases or injuries for the past 6 months to collect gait data. This study performed a DTW 132 times in total (male=62, female=62) for the flexion angle of the right leg's hip, knee, and ankle joints. Then, the global cost and the RMSE of the optimal warping paths were calculated and normalized. The difference analysis was performed by independent -test. Machine learning was performed to test the classification performance using the neural network, support vector machine, and logistic regression model among the supervised models. Results analyzed using global cost and RMSE for hip, knee, and ankle joints showed a statistically significant difference between genders in global cost and RMSE for hip and knee joints but not for ankle joints using RMSE. Considering both area under the receiver operating characteristic curve and F1-score, the logistic regression model has been evaluated as the most suitable for gender classification using the global cost or RMSE. This study demonstrated that optimal warping paths could be used for statistical difference analysis and classification analysis.

摘要

本研究的目的是使用动态时间规整(DTW)的最优规整路径来验证分类性能以及性别之间的差异分析,并检验由最优规整路径到对角线的垂直距离所表示的均方根误差(RMSE)的有用性。对24名20多岁的健康成年人(男性 = 12名,女性 = 12名)进行了三维运动分析实验,这些人在过去6个月内没有步态相关疾病或损伤,以收集步态数据。本研究针对右腿髋、膝和踝关节的屈曲角度总共进行了132次DTW(男性 = 62次,女性 = 62次)。然后,计算并归一化最优规整路径的全局代价和RMSE。通过独立样本t检验进行差异分析。在监督模型中,使用神经网络、支持向量机和逻辑回归模型进行机器学习以测试分类性能。使用髋、膝和踝关节的全局代价和RMSE分析结果表明,在全局代价方面,髋和膝关节的性别差异具有统计学意义,而在RMSE方面,踝关节使用RMSE时性别差异无统计学意义。综合考虑受试者工作特征曲线下面积和F1分数,逻辑回归模型被评估为最适合使用全局代价或RMSE进行性别分类。本研究表明,最优规整路径可用于统计差异分析和分类分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a44c/9993011/2482170b4c3e/jer-19-1-85f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验