Suppr超能文献

识别加利福尼亚北部大型综合卫生系统中成年人无家可归的预测因素。

Identifying Predictors of Homelessness Among Adults in a Large Integrated Health System in Northern California.

机构信息

Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA.

Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, CA, USA.

出版信息

Perm J. 2023 Mar 15;27(1):56-71. doi: 10.7812/TPP/22.096. Epub 2023 Mar 13.

Abstract

Introduction Homelessness contributes to worsening health and increased health care costs. There is little published research that leverages rich electronic health record (EHR) data to predict future homelessness risk and inform interventions to address it. The authors' objective was to develop a model for predicting future homelessness using individual EHR and geographic data covariates. Methods This retrospective cohort study included 2,543,504 adult members (≥ 18 years old) from Kaiser Permanente Northern California and evaluated which covariates predicted a composite outcome of homelessness status (hospital discharge documentation of a homeless patient, medical diagnosis of homelessness, approved medical financial assistance application for homelessness, and/or "homeless/shelter" in address name). The predictors were measured in 2018-2019 and included prior diagnoses and demographic and geographic data. The outcome was measured in 2020. The cohort was split (70:30) into a derivation and validation set, and logistic regression was used to model the outcome. Results Homelessness prevalence was 0.35% in the overall sample. The final logistic regression model included 26 prior diagnoses, demographic, and geographic-level predictors. The regression model using the validation set had moderate sensitivity (80.4%) and specificity (83.2%) for predicting future cases of homelessness and achieved excellent classification properties (area under the curve of 0.891 [95% confidence interval = 0.884-0.897]). Discussion This prediction model can be used as an initial triage step to enhance screening and referral tools for identifying and addressing homelessness, which can improve health and reduce health care costs. Conclusions EHR data can be used to predict chance of homelessness at a population health level.

摘要

简介 无家可归会导致健康状况恶化和医疗保健成本增加。利用丰富的电子健康记录 (EHR) 数据预测未来无家可归风险并为解决该问题提供干预措施的研究很少。作者的目的是利用个体 EHR 和地理数据协变量开发一种预测未来无家可归风险的模型。

方法 本回顾性队列研究包括 Kaiser Permanente 北加州的 2,543,504 名成年成员(≥18 岁),评估了哪些协变量可以预测无家可归状态的综合结局(医院出院记录中的无家可归患者、无家可归的医疗诊断、无家可归的医疗财务援助申请批准,以及/或地址名称中的“无家可归/避难所”)。预测因素在 2018-2019 年进行测量,包括既往诊断和人口统计学及地理数据。结局在 2020 年进行测量。队列分为(70:30)推导集和验证集,使用逻辑回归对结局进行建模。

结果 总体样本中无家可归的患病率为 0.35%。最终的逻辑回归模型包括 26 个既往诊断、人口统计学和地理水平的预测因素。在验证集中使用的回归模型对预测未来无家可归病例具有中等敏感性(80.4%)和特异性(83.2%),并且具有出色的分类特性(曲线下面积为 0.891 [95%置信区间= 0.884-0.897])。

讨论 该预测模型可用作初始分诊步骤,以增强筛选和转介工具,以识别和解决无家可归问题,从而改善健康状况并降低医疗保健成本。

结论 EHR 数据可用于预测人群健康水平的无家可归几率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/825f/10013725/f5e89649b2e0/tpp_22.096-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验