Suppr超能文献

姐妹染色单体黏合建立的对称控制。

Symmetric control of sister chromatid cohesion establishment.

机构信息

Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Guangdong Key Laboratory for Genome Stability & Disease Prevention, School of Basic Medical Sciences, Shenzhen University Medical School, South China Hospital, Shenzhen 518116. State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

School of Life Sciences; Beijing Advanced Innovation Center for Structural Biology; Beijing Frontier Research Center of Biological Structure, Tsinghua University, Beijing 100084, China.

出版信息

Nucleic Acids Res. 2023 Jun 9;51(10):4760-4773. doi: 10.1093/nar/gkad146.

Abstract

Besides entrapping sister chromatids, cohesin drives other high-order chromosomal structural dynamics like looping, compartmentalization and condensation. ESCO2 acetylates a subset of cohesin so that cohesion must be established and only be established between nascent sister chromatids. How this process is precisely achieved remains unknown. Here, we report that GSK3 family kinases provide higher hierarchical control through an ESCO2 regulator, CRL4MMS22L. GSK3s phosphorylate Thr105 in MMS22L, resulting in homo-dimerization of CRL4MMS22L and ESCO2 during S phase as evidenced by single-molecule spectroscopy and several biochemical approaches. A single phospho-mimicking mutation on MMS22L (T105D) is sufficient to mediate their dimerization and rescue the cohesion defects caused by GSK3 or MMS22L depletion, whereas non-phosphorylable T105A exerts dominant-negative effects even in wildtype cells. Through cell fractionation and time-course measurements, we show that GSK3s facilitate the timely chromatin association of MMS22L and ESCO2 and subsequently SMC3 acetylation. The necessity of ESCO2 dimerization implicates symmetric control of cohesion establishment in eukaryotes.

摘要

除了捕获姐妹染色单体,黏合蛋白还驱动其他高级染色体结构动力学,如环化、区室化和浓缩。ESCO2 乙酰化黏合蛋白的一个亚基,因此,黏合必须在新合成的姐妹染色单体之间建立。这个过程是如何精确实现的仍然未知。在这里,我们报告说,GSK3 家族激酶通过一个 ESCO2 调节因子 CRL4MMS22L 提供更高层次的控制。GSK3 磷酸化 MMS22L 上的 Thr105,导致 CRL4MMS22L 和 ESCO2 在 S 期的同源二聚化,这一点通过单分子光谱和几种生化方法得到了证明。MMS22L 上的单个磷酸模拟突变(T105D)足以介导它们的二聚化,并挽救由 GSK3 或 MMS22L 耗竭引起的黏合缺陷,而不可磷酸化的 T105A 即使在野生型细胞中也具有显性负效应。通过细胞分级分离和时程测量,我们表明 GSK3 促进了 MMS22L 和 ESCO2 的及时染色质关联,随后 SMC3 乙酰化。ESCO2 二聚化的必要性暗示了真核生物中黏合建立的对称控制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d9e/10250241/32c824df857b/gkad146fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验