Bioinformatics Group, Department of Computer Science and Interdisciplinary Centre for Bioinformatics, Leipzig University, Härtelstraße 16-18, 04107 Leipzig, Germany.
Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103 Leipzig, Germany.
Nucleic Acids Res. 2023 Apr 11;51(6):2850-2861. doi: 10.1093/nar/gkad137.
Research in the last two decades has increasingly demonstrated that RNA has capabilities comparable to those of proteins, for example the ability to form intricate 3D structures necessary for catalysis. Numerous protein domains are known in varied within-domain rearrangements, called permutations, that change the N- to C-terminal order of important amino acids inside the domain, but maintain their 3D locations. In RNAs, by contrast, only simple circular permutations are known, in which 5' and 3' portions of the molecule are merely swapped. Here, we computationally find and experimentally validate naturally occurring RNAs exhibiting non-circular permutations of previously established hammerhead ribozyme RNAs. In addition to the rearranged RNAs, a bioinformatics-based search uncovered many other new conserved RNA structures that likely play different biological roles. Our results further demonstrate the structural sophistication of RNA, indicate a need for more nuance in the analysis of pseudoknots, and could be exploited in RNA-based biotechnology applications.
在过去的二十年中,研究越来越多地表明,RNA 具有与蛋白质相当的功能,例如形成复杂的 3D 结构以进行催化。在各种域内重排(称为排列)中,已知有许多蛋白质结构域,这些重排改变了域内重要氨基酸的 N-至 C-末端顺序,但保持了它们的 3D 位置。相比之下,在 RNA 中,仅已知简单的环状排列,其中分子的 5'和 3'部分仅是交换。在这里,我们通过计算找到了并通过实验验证了天然存在的 RNA,这些 RNA 表现出以前建立的锤头核酶 RNA 的非环状排列。除了重排的 RNA 之外,基于生物信息学的搜索还发现了许多其他新的保守 RNA 结构,它们可能发挥不同的生物学作用。我们的结果进一步证明了 RNA 的结构复杂性,表明需要更细致地分析假结,并可应用于基于 RNA 的生物技术应用中。