Suppr超能文献

中性 pH 下 DNA i 型发夹结构的形成是由动力学分配驱动的。

DNA i-motif formation at neutral pH is driven by kinetic partitioning.

机构信息

Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 612 00, Czech Republic.

Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.

出版信息

Nucleic Acids Res. 2023 Apr 11;51(6):2950-2962. doi: 10.1093/nar/gkad119.

Abstract

Cytosine-rich DNA regions can form four-stranded structures based on hemi-protonated C.C+ pairs, called i-motifs (iMs). Using CD, UV absorption, NMR spectroscopy, and DSC calorimetry, we show that model (CnT3)3Cn (Cn) sequences adopt iM under neutral or slightly alkaline conditions for n > 3. However, the iMs are formed with long-lasting kinetics under these conditions and melt with significant hysteresis. Sequences with n > 6 melt in two or more separate steps, indicating the presence of different iM species, the proportion of which is dependent on temperature and incubation time. At ambient temperature, kinetically favored iMs of low stability are formed, most likely consisting of short C.C+ blocks. These species act as kinetic traps and prevent the assembly of thermodynamically favored, fully C.C+ paired iMs. A higher temperature is necessary to unfold the kinetic forms and enable their substitution by a slowly developing thermodynamic structure. This complicated kinetic partitioning process considerably slows down iM folding, making it much slower than the timeframes of biological reactions and, therefore, unlikely to have any biological relevance. Our data suggest kinetically driven iM species as more likely to be biologically relevant than thermodynamically most stable iM forms.

摘要

富含胞嘧啶的 DNA 区域可以基于半质子化的 C.C+ 对形成四链结构,称为 i- 发夹(iMs)。使用 CD、UV 吸收、NMR 光谱和 DSC 量热法,我们表明模型 (CnT3)3Cn (Cn) 序列在中性或略碱性条件下(n>3)形成 iM。然而,在这些条件下,iMs 的形成具有持久的动力学,并且熔融具有明显的滞后。n>6 的序列在两个或更多个单独的步骤中熔融,表明存在不同的 iM 物种,其比例取决于温度和孵育时间。在环境温度下,形成低稳定性的动力学有利的 iMs,很可能由短的 C.C+ 块组成。这些物质充当动力学陷阱,阻止热力学有利的、完全 C.C+ 配对的 iMs 的组装。需要更高的温度来展开动力学形式,从而使其能够被缓慢发展的热力学结构取代。这种复杂的动力学分配过程极大地减缓了 iM 的折叠,使其比生物反应的时间框架慢得多,因此不太可能具有任何生物学相关性。我们的数据表明,动力学驱动的 iM 物种比热力学最稳定的 iM 形式更有可能具有生物学相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/970c/10085675/bdf8b9461300/gkad119figgra1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验