Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
Inorg Chem. 2023 Mar 27;62(12):4883-4893. doi: 10.1021/acs.inorgchem.2c04228. Epub 2023 Mar 13.
Single-atom adsorbents (SAAs) featuring maximized atom utilization and uniform isolated adsorption sites have aroused extensive research interest in recent years as a novel class of adsorption materials research. Nevertheless, it is still challenging to gain a fundamental understanding of the complicated behaviors of SAAs for adsorbing thiophenic compounds (THs). Herein, this work systematically investigated the mechanisms of adsorption desulfurization (ADS) over a single group IIIA metal atom (Ga, In, and Tl) anchored on hexagonal boron nitride nanosheets (BNNSs) via density functional theory (DFT) calculations. First, all the possible doping sites have been considered and their stabilities have been evaluated by the doped energy. DFT calculations reveal that metal atoms prefer to substitute B atoms on BNNSs rather than N atoms. Additionally, SAAs all exhibit considerably enhanced adsorption capacity for THs primarily by the sulfur-metal (S-M) bond with π-π interactions maintained. Among them, In-atom-based SAAs would be adequate to provide the highest adsorption energy (In_cen_B, -40.1 kcal mol). Furthermore, from the perspective of adsorption energy, the SAAs show superior selectivity to THs than aromatic compounds due to the newly formed S-M bond. We hope that our work will manifest the design and application of SAAs in the field of ADS and shed light on a new strategy for fabricating SAAs based on BNNSs.
单原子吸附剂(SAAs)具有最大化的原子利用率和均匀的孤立吸附位点,作为一类新型吸附材料研究引起了广泛的研究兴趣。然而,要深入了解 SAAs 吸附噻吩类化合物(THs)的复杂行为仍然具有挑战性。在这项工作中,通过密度泛函理论(DFT)计算,系统地研究了 IIIA 族单金属原子(Ga、In 和 Tl)锚定在六方氮化硼纳米片(BNNSs)上的吸附脱硫(ADS)机制。首先,考虑了所有可能的掺杂位置,并通过掺杂能评估了它们的稳定性。DFT 计算表明,金属原子优先取代 BNNSs 上的 B 原子而不是 N 原子。此外,SAAs 对 THs 的吸附容量均有显著提高,主要是通过保持π-π相互作用的硫-金属(S-M)键。其中,基于 In 原子的 SAAs 将提供最高的吸附能(In_cen_B,-40.1 kcal/mol)。此外,从吸附能的角度来看,SAAs 对 THs 的选择性优于芳香族化合物,因为形成了新的 S-M 键。我们希望我们的工作将展示 SAAs 在 ADS 领域的设计和应用,并为基于 BNNSs 的 SAAs 的制备提供新的策略。