Department of Anesthesiology, University of Wisconsin-Madison.
Department of Medical Genetics, University of Wisconsin-Madison.
J Vis Exp. 2023 Feb 24(192). doi: 10.3791/65144.
Volatile general anesthetics (VGAs) are used worldwide on millions of people of all ages and medical conditions. High concentrations of VGAs (hundreds of micromolar to low millimolar) are necessary to achieve a profound and unphysiological suppression of brain function presenting as "anesthesia" to the observer. The full spectrum of the collateral effects triggered by such high concentrations of lipophilic agents is not known, but interactions with the immune-inflammatory system have been noted, although their biological significance is not understood. To investigate the biological effects of VGAs in animals, we developed a system termed the serial anesthesia array (SAA) to exploit the experimental advantages offered by the fruit fly (Drosophila melanogaster). The SAA consists of eight chambers arranged in series and connected to a common inflow. Some parts are available in the lab, and others can be easily fabricated or purchased. A vaporizer, which is necessary for the calibrated administration of VGAs, is the only commercially manufactured component. VGAs constitute only a small percentage of the atmosphere flowing through the SAA during operation, as the bulk (typically over 95%) is carrier gas; the default carrier is air. However, oxygen and any other gases can be investigated. The SAA's principal advantage over prior systems is that it allows the simultaneous exposure of multiple cohorts of flies to exactly titrable doses of VGAs. Identical concentrations of VGAs are achieved within minutes in all the chambers, thus providing indistinguishable experimental conditions. Each chamber can contain from a single fly to hundreds of flies. For example, the SAA can simultaneously examine eight different genotypes or four genotypes with different biological variables (e.g., male vs. female, old vs. young). We have used the SAA to investigate the pharmacodynamics of VGAs and their pharmacogenetic interactions in two experimental fly models associated with neuroinflammation-mitochondrial mutants and traumatic brain injury (TBI).
挥发性全身麻醉剂(VGAs)在全球范围内被用于数百万年龄和医疗条件各异的人群。为了实现对大脑功能的深度和非生理抑制,从而使观察者表现出“麻醉”状态,需要使用高浓度的 VGA(数百微摩尔至低毫摩尔)。目前还不知道如此高浓度的亲脂性药物引发的所有副作用,但已经注意到与免疫炎症系统的相互作用,尽管其生物学意义尚不清楚。为了在动物中研究 VGA 的生物学效应,我们开发了一种称为连续麻醉阵列(SAA)的系统,以利用果蝇(Drosophila melanogaster)提供的实验优势。SAA 由八个串联排列的腔室组成,并与一个共同的入口连接。其中一些部分在实验室中可用,其他部分可以很容易地制造或购买。汽化器是 VGA 校准给药所必需的,它是唯一商业化制造的组件。在 SAA 运行过程中,VGAs 仅占通过 SAA 流动的大气的一小部分,因为大部分(通常超过 95%)是载气;默认的载气是空气。然而,氧气和任何其他气体都可以进行研究。SAA 相对于先前系统的主要优势在于,它允许同时对多批果蝇进行可精确滴定剂量的 VGA 暴露。在所有腔室内,VGAs 可以在几分钟内达到相同的浓度,从而提供可区分的实验条件。每个腔室可以容纳一只或数百只苍蝇。例如,SAA 可以同时检查八个不同的基因型或四个具有不同生物学变量(例如,雄性与雌性、年老与年轻)的基因型。我们已经使用 SAA 研究了两种与神经炎症-线粒体突变体和创伤性脑损伤(TBI)相关的实验果蝇模型中 VGA 的药效动力学及其遗传药理学相互作用。