Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706-1580.
Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706-1580
Genetics. 2018 Apr;208(4):1535-1552. doi: 10.1534/genetics.118.300818. Epub 2018 Mar 1.
Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions are sparse. Here we describe the characterization of a mutation in , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the mutant phenotype. mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease.
适当的线粒体活性取决于核基因组和线粒体基因组中基因编码的蛋白质,这些蛋白质必须以精确协调的方式在功能和物理上相互作用。因此,人们认为线粒体-核等位基因相互作用在进化尺度上以及表型的表现至关重要,包括那些与人类疾病直接相关的表型。尽管如此,对于线粒体-核相互作用的详细分子理解仍然缺乏,并且这样的相互作用的明确例子也很稀少。在这里,我们描述了一个核基因编码的线粒体复合物 1 高度保守亚基的突变 的特征。这种特征导致了发现一种影响 突变表型的线粒体-核相互作用。 突变体表现出寿命缩短、神经退行性变、线粒体形态异常和 ATP 水平降低。这些表型与 Leigh 综合征患者观察到的表型相似, Leigh 综合征是由许多核基因的突变引起的,这些基因编码线粒体蛋白,包括 的人类同源物。 Leigh 综合征和其他线粒体疾病的一个关键特征是表型的不可预测性和无法解释的变异性。我们发现 突变的表型严重程度取决于母系遗传的线粒体背景。对相关线粒体基因组的序列分析确定了几个可能与 突变体发生表型相互作用的变体,包括一个影响复合物 I 中线粒体编码成分的变体。因此,我们的工作提供了线粒体疾病背景下线粒体-核相互作用表型重要性的实例。