Suppr超能文献

通过螯合促进的键削弱来获得不寻常的反应活性。

Accessing Unusual Reactivity through Chelation-Promoted Bond Weakening.

机构信息

Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States.

Department of Chemistry, C. V. Raman Global University, Bhubaneswar, Odisha 752054, India.

出版信息

Inorg Chem. 2023 Mar 27;62(12):5040-5045. doi: 10.1021/acs.inorgchem.3c00298. Epub 2023 Mar 13.

Abstract

Highly reducing Sm(II) reductants and protic ligands were used as a platform to ascertain the relationship between low-valent metal-protic ligand affinity and degree of ligand X-H bond weakening with the goal of forming potent proton-coupled electron transfer (PCET) reductants. Among the Sm(II)-protic ligand reductant systems investigated, the samarium dibromide -methylethanolamine (SmBr-NMEA) reagent system displayed the best combination of metal-ligand affinity and stability against H evolution. The use of SmBr-NMEA afforded the reduction of a range of substrates that are typically recalcitrant to single-electron reduction including alkynes, lactones, and arenes as stable as biphenyl. Moreover, the unique role of NMEA as a chelating ligand for Sm(II) was demonstrated by the reductive cyclization of unactivated esters bearing pendant olefins in contrast to the SmBr-water-amine system. Finally, the SmBr-NMEA reagent system was found to reduce substrates analogous to key intermediates in the nitrogen fixation process. These results reveal SmBr-NMEA to be a powerful reductant for a wide range of challenging substrates and demonstrate the potential for the rational design of PCET reagents with exceptionally weak X-H bonds.

摘要

高还原态的 Sm(II)还原剂和质子配体被用作一个平台,以确定低价金属-质子配体亲和力与配体 X-H 键削弱程度之间的关系,目标是形成有效的质子耦合电子转移(PCET)还原剂。在所研究的 Sm(II)-质子配体还原剂系统中,二溴化钐-甲乙醇胺(SmBr-NMEA)试剂系统显示出金属-配体亲和力和对 H 析出稳定性的最佳组合。SmBr-NMEA 的使用能够还原一系列通常难以单电子还原的底物,包括炔烃、内酯和芳基,其稳定性与联苯相当。此外,NMEA 作为 Sm(II)的螯合配体的独特作用通过带有侧链烯烃的未活化酯的还原环化得到证明,而 SmBr-水-胺系统则不能。最后,发现 SmBr-NMEA 试剂系统可以还原类似于固氮过程中关键中间体的底物。这些结果表明 SmBr-NMEA 是一种用于广泛具有挑战性的底物的强大还原剂,并证明了具有异常弱 X-H 键的 PCET 试剂的合理设计的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bb4/10249415/2688d4b6eeab/ic3c00298_0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验