Division of Chemistry and Chemical Engineering, California Institute of Technology (Caltech), Pasadena, California 91125, United States.
J Am Chem Soc. 2022 Nov 23;144(46):21337-21346. doi: 10.1021/jacs.2c09580. Epub 2022 Nov 8.
Coordination of alcohols to the single-electron reductant samarium diiodide (SmI) results in substantial O-H bond weakening, affording potent proton-coupled electron transfer (PCET) reagents. However, poorly defined speciation of SmI in tetrahydrofuran (THF)/alcohol mixtures limits reliable thermodynamic analyses of such systems. Rigorous determination of bond dissociation free energy (BDFE) values in such Sm systems, important to evaluating their reactivity profiles, motivates studies of model Sm systems where contributing factors can be teased apart. Here, a bulky and strongly chelating macrocyclic ligand ((ArOH)Mecyclam) maintains solubility, eliminates dimerization pathways, and facilitates clean electrochemical behavior in a well-defined functional model for the PCET reactivity of Sm with coordinating proton sources. Direct measurement of thermodynamic parameters enables reliable experimental estimation of the BDFEs in 2-pyrrolidone and MeOH complexes of ((ArO)Mecyclam)Sm, thereby revealing exceptionally weak N-H and O-H BDFEs of 27.2 and <24.1 kcal mol, respectively. Expanded thermochemical cycles reveal that this bond weakening stems from the very strongly reducing Sm center and the formation of strong Sm-alkoxide (and -pyrrolidonate) interactions in the PCET products. We provide a detailed analysis comparing these BDFE values with those that have been put forward for SmI in THF in the presence of related proton donors. We suggest that BDFE values for the latter systems may in fact be appreciably higher than the system described herein. Finally, protonation and electrochemical reduction steps necessary for the regeneration of the PCET donors from Sm-alkoxides are demonstrated, pointing to future strategies aimed at achieving (electro)catalytic turnover using Sm-based PCET reagents.
醇与单电子还原剂钐二碘化物(SmI)的配位导致 O-H 键显著减弱,从而提供了有效的质子耦合电子转移(PCET)试剂。然而,在四氢呋喃(THF)/醇混合物中 SmI 的形态定义不明确,限制了对这些体系的可靠热力学分析。在这种 Sm 体系中严格确定键离解自由能(BDFE)值对于评估其反应性轮廓非常重要,这促使人们对模型 Sm 体系进行研究,在这些体系中可以分离出相关因素。在这里,一个庞大而强螯合的大环配体((ArOH)Mecyclam)保持了溶解性,消除了二聚化途径,并在一个明确的功能模型中促进了 Sm 与配位质子源的 PCET 反应的电化学行为。热力学参数的直接测量使得能够可靠地实验估计(ArO)Mecyclam)Sm 在 2-吡咯烷酮和 MeOH 配合物中的 BDFE,从而揭示出异常弱的 N-H 和 O-H BDFE 分别为 27.2 和<24.1 kcal/mol。扩展的热化学循环表明,这种键的削弱源于非常强还原的 Sm 中心和在 PCET 产物中形成的强 Sm-烷氧基(和-吡咯烷酮)相互作用。我们提供了一个详细的分析,将这些 BDFE 值与在存在相关质子供体的情况下提出的 THF 中 SmI 的 BDFE 值进行了比较。我们认为,后一类体系的 BDFE 值实际上可能明显高于本文所述的体系。最后,还证明了 Sm-烷氧化物从 Sm 盐再生所需的质子化和电化学还原步骤,为使用基于 Sm 的 PCET 试剂实现(电)催化循环指明了未来的策略。