Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
Environ Sci Technol. 2023 Nov 28;57(47):18586-18596. doi: 10.1021/acs.est.2c06373. Epub 2023 Mar 13.
Fenton processes produce reactive species that can oxidize organic compounds in natural and engineered systems. While it is well-documented that Fenton reactions produce hydroxyl radical (HO) under acidic conditions, we demonstrated the generation of ferryl ion (FeO) in the UV/Fe(III) and UV/Fe(III)/HO systems at pH 2.8 using methyl phenyl sulfoxide (PMSO) as the probe compound. Moreover, we clarified that FeO is parallelly formed via the oxidation of Fe(III) by HO and the O-O homolysis of [Fe-OOH] in the photo-Fenton process. The rate constant for the reaction between HO and Fe measured by laser flash photolysis was 4.41 × 10 M s. The rate constant and quantum yield for thermal and photo O-O homolysis of [Fe-OOH] complex were 1.4 × 10 s and 0.3, respectively, which were determined by fitting PMSO formation. While FeO forms predominantly through the reaction between HO and Fe in the absence of HO, the relative contribution of [Fe-OOH] O-O homolysis to FeO formation highly depends on the molar ratio of [HO]/[Fe(III)], the level of HO scavenging, and incident irradiance in the UV/Fe(III)/HO system. Accordingly, an optimized kinetic model was developed by incorporating FeO-involved reactions into the conventional photo-Fenton model, which can accurately predict Fe(II) formation and contaminant decay in the UV/Fe(III) and UV/Fe(III)/HO systems. Our study illuminated the underlying formation mechanism of reactive oxidative species in the photo-Fenton process and highlighted the role of FeO evolution in modulating the iron cycle and pollutant abatement therein.
芬顿工艺产生的活性物质可以氧化自然和工程系统中的有机化合物。虽然已有大量文献报道,在酸性条件下芬顿反应会产生羟基自由基(HO),但我们通过使用甲基苯基砜(PMSO)作为探针化合物,在 pH 2.8 的 UV/Fe(III)和 UV/Fe(III)/HO 体系中证明了高铁离子(FeO)的生成。此外,我们阐明了在光芬顿过程中,FeO 通过 HO 氧化 Fe(III)和[Fe-OOH]的 O-O 均裂平行生成。通过激光闪光光解测量得到 HO 与 Fe 之间的反应速率常数为 4.41×10 M s。通过拟合 PMSO 生成,确定了[Fe-OOH]配合物的热 O-O 均裂和光 O-O 均裂的速率常数和量子产率分别为 1.4×10 s 和 0.3。在没有 HO 的情况下,FeO 主要通过 HO 与 Fe 的反应形成,而[Fe-OOH]的 O-O 均裂对 FeO 形成的相对贡献高度依赖于[HO]/[Fe(III)]的摩尔比、HO 清除水平和 UV/Fe(III)/HO 体系中的入射辐照度。因此,通过将涉及 FeO 的反应纳入传统的光芬顿模型,建立了一个优化的动力学模型,该模型可以准确预测 UV/Fe(III)和 UV/Fe(III)/HO 体系中 Fe(II)的形成和污染物的降解。本研究阐明了光芬顿过程中活性氧化物种的潜在形成机制,并强调了 FeO 演变在调节铁循环和其中污染物去除中的作用。