Suppr超能文献

铁离子对强力霉素光催化和基于 Fenton 的自催化分解的影响。

Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.

机构信息

Department of Chemical Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia.

Department of Chemical Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn 19086, Estonia.

出版信息

Chemosphere. 2016 Jun;153:220-6. doi: 10.1016/j.chemosphere.2016.03.042. Epub 2016 Mar 25.

Abstract

Doxycycline plays a key role in Fe(III)-to-Fe(II) redox cycling and therefore in controlling the overall reaction rate of the Fenton-based process (H2O2/Fe(III)). This highlights the autocatalytic profile of doxycycline degradation. Ferric iron reduction in the presence of doxycycline relied on doxycycline-to-Fe(III) complex formation with an ensuing reductive release of Fe(II). The lower ratio of OH-to-contaminant in an initial H2O2/Fe(III) oxidation step than in that of classical Fenton (H2O2/Fe(II)) decreased the doxycycline degradation rate. The quantum yield of doxycycline in direct UV-C photolysis was 3.1 × 10(-3) M E(-1). In spite of doxycycline-Fe(III) complexes could produce the adverse effect on the doxycycline degradation in the UV/Fe(III) system some acceleration of the rate was observed upon irradiation of the Fe(III)-hydroxy complex. Acidic reaction media (pH 3.0) and the molar ratio of DC/Fe(III) = 2/1 favored the complex formation. Doxycycline close degradation rates and complete mineralization achieved for 120 min (Table 1) with both UV/H2O2 and UV/H2O2/Fe(III) indicated the unsubstantial role of the reduction of Fe(III) to Fe(II) in UV/H2O2/Fe(III) system efficacy. Thus, factors such as doxycycline's ability to form complexes with ferric iron and the ability of complexes to participate in a reductive pathway should be considered at a technological level in process optimization, with chemistry based on iron ion catalysis to enhance the doxycycline oxidative pathway.

摘要

强力霉素在 Fe(III)到 Fe(II)的氧化还原循环中起着关键作用,因此控制了基于芬顿的反应(H2O2/Fe(III))的整体反应速率。这突出了强力霉素降解的自催化特性。在强力霉素存在的情况下,三价铁的还原依赖于强力霉素与 Fe(III)的络合,随后释放出 Fe(II)。在初始 H2O2/Fe(III)氧化步骤中,OH 与污染物的比例低于经典芬顿(H2O2/Fe(II)),这降低了强力霉素的降解速率。在直接 UV-C 光解中,强力霉素的量子产率为 3.1×10(-3) M E(-1)。尽管强力霉素-Fe(III)络合物会对 UV/Fe(III)系统中的强力霉素降解产生不利影响,但在照射 Fe(III)-羟基络合物时,观察到速率有所加快。在酸性反应介质(pH 3.0)和 DC/Fe(III)摩尔比为 2/1 的条件下有利于络合物的形成。UV/H2O2 和 UV/H2O2/Fe(III) 都在 120 分钟内实现了强力霉素的接近完全降解和完全矿化(表 1),这表明在 UV/H2O2/Fe(III)系统中,Fe(III)还原为 Fe(II)对系统功效的作用不大。因此,在工艺优化中,应在技术层面上考虑到强力霉素与三价铁形成络合物的能力以及络合物参与还原途径的能力等因素,基于铁离子催化的化学方法可增强强力霉素的氧化途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验