Suppr超能文献

细菌电压门控钠离子通道的机械敏感孔道开放。

Mechanosensitive pore opening of a prokaryotic voltage-gated sodium channel.

机构信息

Enteric Neuroscience Program (ENSP), Division of Gastroenterology & Hepatology, Department of Medicine, Mayo Clinic, Rochester, United States.

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States.

出版信息

Elife. 2023 Mar 13;12:e79271. doi: 10.7554/eLife.79271.

Abstract

Voltage-gated ion channels (VGICs) orchestrate electrical activities that drive mechanical functions in contractile tissues such as the heart and gut. In turn, contractions change membrane tension and impact ion channels. VGICs are mechanosensitive, but the mechanisms of mechanosensitivity remain poorly understood. Here, we leverage the relative simplicity of NaChBac, a prokaryotic voltage-gated sodium channel from , to investigate mechanosensitivity. In whole-cell experiments on heterologously transfected HEK293 cells, shear stress reversibly altered the kinetic properties of NaChBac and increased its maximum current, comparably to the mechanosensitive eukaryotic sodium channel Na1.5. In single-channel experiments, patch suction reversibly increased the open probability of a NaChBac mutant with inactivation removed. A simple kinetic mechanism featuring a mechanosensitive pore opening transition explained the overall response to force, whereas an alternative model with mechanosensitive voltage sensor activation diverged from the data. Structural analysis of NaChBac identified a large displacement of the hinged intracellular gate, and mutagenesis near the hinge diminished NaChBac mechanosensitivity, further supporting the proposed mechanism. Our results suggest that NaChBac is overall mechanosensitive due to the mechanosensitivity of a voltage-insensitive gating step associated with the pore opening. This mechanism may apply to eukaryotic VGICs, including Na1.5.

摘要

电压门控离子通道(VGICs)调节驱动心肌和肠道等收缩组织机械功能的电活动。反过来,收缩会改变膜张力并影响离子通道。VGICs 是机械敏感的,但机械敏感性的机制仍知之甚少。在这里,我们利用来自 的原核电压门控钠离子通道 NaChBac 的相对简单性来研究机械敏感性。在异源转染的 HEK293 细胞的全细胞实验中,剪切力可逆地改变了 NaChBac 的动力学特性并增加了其最大电流,与机械敏感的真核钠离子通道 Na1.5 相当。在单通道实验中,补丁抽吸可逆地增加了失活的 NaChBac 突变体的开放概率。一个简单的动力学机制,其特征是机械敏感的孔开口转换,解释了对力的整体反应,而具有机械敏感电压传感器激活的替代模型与数据不符。NaChBac 的结构分析确定了铰接的细胞内门的大位移,并且铰链附近的突变降低了 NaChBac 的机械敏感性,进一步支持了所提出的机制。我们的结果表明,由于与孔开口相关的电压不敏感门控步骤的机械敏感性,NaChBac 总体上是机械敏感的。这种机制可能适用于包括 Na1.5 在内的真核 VGICs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1fb/10038658/fb4e112c015f/elife-79271-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验