Suppr超能文献

呼吸波动对脑循环的影响:一种集成机器学习的 0-1D 多尺度血流动力学模型。

Impacts of respiratory fluctuations on cerebral circulation: a machine-learning-integrated 0-1D multiscale hemodynamic model.

机构信息

Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.

Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, People's Republic of China.

出版信息

Physiol Meas. 2023 Apr 3;44(3). doi: 10.1088/1361-6579/acc3d7.

Abstract

. This study aims to accurately identify the effects of respiration on the hemodynamics of the human cardiovascular system, especially the cerebral circulation.: we have developed a machine learning (ML)-integrated zero-one-dimensional (0-1D) multiscale hemodynamic model combining a lumped-parameter 0D model for the peripheral vascular bed and a one-dimensional (1D) hemodynamic model for the vascular network.measurement data of 21 patients were retrieved and partitioned into 8000 data samples in which respiratory fluctuation (RF) of intrathoracic pressure (ITP) was fitted by the Fourier series. ML-based classification and regression algorithms were used to examine the influencing factors and variation trends of the key parameters in the ITP equations and the mean arterial pressure. These parameters were employed as the initial conditions of the 0-1D model to calculate the radial artery blood pressure and the vertebral artery blood flow volume (VAFV).: during stable spontaneous respiration, the VAFV can be augmented at the inhalation endpoints by approximately 0.1 ml sfor infants and 0.5 ml sfor adolescents or adults, compared to those without RF effects. It is verified that deep respiration can further increase the ranges up to 0.25 ml sand 1 ml s, respectively.. This study reveals that reasonable adjustment of respiratory patterns, i.e. in deep breathing, enhances the VAFV and promotes cerebral circulation.

摘要

本研究旨在准确识别呼吸对人体心血管系统血流动力学的影响,特别是脑循环:我们开发了一种机器学习(ML)集成的零一维(0-1D)多尺度血流动力学模型,结合了用于外周血管床的集中参数 0D 模型和用于血管网络的一维(1D)血流动力学模型。我们检索了 21 名患者的测量数据,并将其分为 8000 个数据样本,其中胸腔内压力(ITP)的呼吸波动(RF)通过傅里叶级数拟合。基于 ML 的分类和回归算法用于检查 ITP 方程和平均动脉压中关键参数的影响因素和变化趋势。这些参数被用作 0-1D 模型的初始条件,以计算桡动脉血压和椎动脉血流量(VAFV)。在稳定的自主呼吸期间,与没有 RF 影响的患者相比,婴儿的 VAFV 在吸气终点处可增加约 0.1ml/s,青少年或成年人为 0.5ml/s。验证了深呼吸可以分别将范围进一步增加到 0.25ml/s 和 1ml/s。本研究表明,合理调整呼吸模式,即深呼吸,可以增加 VAFV,促进脑循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验