Dover Nicholas P, Ziegler Tim, Assenbaum Stefan, Bernert Constantin, Bock Stefan, Brack Florian-Emanuel, Cowan Thomas E, Ditter Emma J, Garten Marco, Gaus Lennart, Goethel Ilja, Hicks George S, Kiriyama Hiromitsu, Kluge Thomas, Koga James K, Kon Akira, Kondo Kotaro, Kraft Stephan, Kroll Florian, Lowe Hazel F, Metzkes-Ng Josefine, Miyatake Tatsuhiko, Najmudin Zulfikar, Püschel Thomas, Rehwald Martin, Reimold Marvin, Sakaki Hironao, Schlenvoigt Hans-Peter, Shiokawa Keiichiro, Umlandt Marvin E P, Schramm Ulrich, Zeil Karl, Nishiuchi Mamiko
Kansai Photon Science Institute, National Institutes for Quantum Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto, 619-0215, Japan.
The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom.
Light Sci Appl. 2023 Mar 13;12(1):71. doi: 10.1038/s41377-023-01083-9.
Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >10 Wcm. Ions are accelerated by an extreme localised space charge field ≳30 TVm, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery.
激光驱动离子源是一种快速发展的技术,可产生高能、高峰值电流束。它们适用于诸如紧凑型医用加速器等应用,这推动了利用广泛可用的重复超强飞秒激光开发稳健的加速方案。这些应用不仅需要高束流能量,而且对源的稳定性和可控性也有苛刻要求。这可能会受到激光时间对比度的严重影响,从而排除了在具有其他类似参数的独立激光系统上复制离子加速性能的可能性。在此,我们展示了用强度大于10 W/cm的激光照射亚微米厚度的福尔马膜,实验产生了能量大于60 MeV的质子和能量大于30 MeV/u的碳离子。离子由一个极端局部化的空间电荷场加速,该场约为30 TV/m,比传统加速器中使用的场高出一百万倍以上。该场是由于相对论性诱导透明导致电子从靶体中快速排出而形成的,其中对折射率的相对论修正使得激光能够透过通常不透明的等离子体。我们在两种不同的激光装置上重现了该机制,并表明由于预膨胀减小,最佳靶厚度随激光对比度的提高而减小。我们证明了通过这种机制可以在不同对比度水平下加速高能离子,这放宽了对激光的要求,并指出了实现特定应用束流传输的相互作用参数。