Suppr超能文献

在新冠疫情期间为隔离在多家酒店的人员提供服务的多机器人任务分配

Multi-robot task assignment for serving people quarantined in multiple hotels during COVID-19 pandemic.

作者信息

Bai Xiaoshan, Li Chang, Li Chao, Khan Awais, Zhang Tianwei, Zhang Bo

机构信息

Shenzhen University, College of Mechatronics and Control Engineering, Shenzhen, China.

Shenzhen City Joint Laboratory of Autonomous Unmanned Systems and Intelligent Manipulation, Shenzhen University, Shenzhen, China.

出版信息

Quant Imaging Med Surg. 2023 Mar 1;13(3):1802-1813. doi: 10.21037/qims-22-842. Epub 2023 Feb 13.

Abstract

BACKGROUND

Efficiently combating with the coronavirus disease 2019 (COVID-19) has been challenging for medics, police and other service providers. To reduce human interaction, multi-robot systems are promising for performing various missions such as disinfection, monitoring, temperature measurement and delivering goods to people quarantined in prescribed homes and hotels. This paper studies the task assignment problem for multiple dispersed homogeneous robots to visit a set of prescribed hotels to perform tasks such as body temperature assessment or oropharyngeal swabs for people quarantined in the hotels while trying to minimize the robots' total operation time. Each robot can move to multiple hotels sequentially within its limited maximum operation time to provide the service.

METHODS

The task assignment problem generalizes the multiple traveling salesman problem, which is an NP-hard problem. The main contributions of the paper are twofold: (I) a lower bound on the robots' total operation time to serve all the people has been found based on graph theory, which can be used to approximately evaluate the optimality of an assignment solution; (II) several efficient marginal-cost-based task assignment algorithms are designed to assign the hotel-serving tasks to the robots.

RESULTS

In the Monte Carlo simulations where different numbers of robots need to serve the people quarantined in 30 and 90 hotels, the designed task assignment algorithms can quickly (around 30 ms) calculate near-optimal assignment solutions (within 1.15 times of the optimal value).

CONCLUSIONS

Numerical simulations show that the algorithms can lead to solutions that are close to the optimal compared with the competitive genetic algorithm and greedy algorithm.

摘要

背景

有效对抗2019冠状病毒病(COVID-19)对医护人员、警察和其他服务提供者来说一直是一项挑战。为了减少人际互动,多机器人系统有望执行各种任务,如消毒、监测、体温测量以及为被隔离在指定家庭和酒店的人员送货。本文研究了多个分散的同类机器人的任务分配问题,这些机器人要访问一组指定酒店,为隔离在酒店中的人员执行诸如体温检测或口咽拭子采集等任务,同时尽量减少机器人的总运行时间。每个机器人可以在其有限的最大运行时间内依次前往多个酒店提供服务。

方法

任务分配问题是多旅行商问题的推广,多旅行商问题是一个NP难问题。本文的主要贡献有两方面:(I)基于图论找到了为所有人提供服务的机器人总运行时间的下限,可用于近似评估分配方案的最优性;(II)设计了几种基于边际成本的高效任务分配算法,将酒店服务任务分配给机器人。

结果

在蒙特卡罗模拟中,不同数量的机器人需要为隔离在30家和90家酒店中的人员提供服务,所设计的任务分配算法能够快速(约30毫秒)计算出接近最优值的分配方案(在最优值的1.15倍以内)。

结论

数值模拟表明,与具有竞争力的遗传算法和贪心算法相比,这些算法能够得出接近最优的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2613/10006103/7fc149d6a367/qims-13-03-1802-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验