Yu Cheng, Zhang Fengjun, Zhang Lili, Li Jiajing, Tang Saixue, Li Xuejun, Peng Min, Zhao Qiong, Zhu Xiuli
Department of Traditional Chinese Medicine Classics, Shandong University of Traditional Chinese Medicine Affiliated Hospital Jinan, Shandong, China.
College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine Jinan, Shandong, China.
Am J Transl Res. 2023 Feb 15;15(2):932-948. eCollection 2023.
This study investigated the pathogenesis of major depressive disorder (MDD) and acute myocardial infarction (AMI) using bioinformatics. We analyzed MDD and AMI (MDD-AMI) datasets provided by the Gene Expression Omnibus (GEO) database for genes common to MDD and AMI using GEO2R and weighted gene co-expression network analysis (WGCNA). We also performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, and we used Disease Ontology (DO) analysis to identify a) the pathways through which genes function and b) comorbidities. We also created a protein-protein interaction (PPI) network using the STRING database to identify the hub genes and biomarkers. NetworkAnalyst 3.0 was used to construct a transcription factor (TF) gene regulatory network. We also identified relevant complications and potential drug candidates. The 27 genes common to MDD and AMI were enriched in the pathways regulating TFs and mediating immunity and inflammation. The hub genes in the PPI network included TLR2, HP, ICAM1, LCN2, LTF, VCAN, S100A9 and NFKBIA. Key TFs were KLF9, KLF11, ZNF24, and ZNF580. Cardiovascular, pancreatic, and skeletal diseases were common complications. Hydrocortisone, simvastatin, and estradiol were candidate treatment drugs. Identification of these genes and their pathways may provide new targets for further research on the pathogenesis, biomarkers, and treatment of MDD-AMI. Together our results suggested that TLR2 and VCAN might be the key genes associated with MDD complicated by AMI.
本研究利用生物信息学方法探究了重度抑郁症(MDD)和急性心肌梗死(AMI)的发病机制。我们使用GEO2R和加权基因共表达网络分析(WGCNA),对基因表达综合数据库(GEO)提供的MDD和AMI(MDD-AMI)数据集进行分析,以寻找MDD和AMI共有的基因。我们还进行了基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析,并使用疾病本体论(DO)分析来确定:a)基因发挥作用的途径;b)合并症。我们还利用STRING数据库创建了蛋白质-蛋白质相互作用(PPI)网络,以识别枢纽基因和生物标志物。使用NetworkAnalyst 3.0构建转录因子(TF)基因调控网络。我们还确定了相关并发症和潜在的候选药物。MDD和AMI共有的27个基因在调节TFs以及介导免疫和炎症的途径中富集。PPI网络中的枢纽基因包括TLR2、HP、ICAM1、LCN2、LTF、VCAN、S100A9和NFKBIA。关键TFs为KLF9、KLF11、ZNF24和ZNF580。心血管疾病、胰腺疾病和骨骼疾病是常见并发症。氢化可的松、辛伐他汀和雌二醇是候选治疗药物。识别这些基因及其途径可能为进一步研究MDD-AMI的发病机制、生物标志物和治疗提供新的靶点。我们的研究结果共同表明,TLR2和VCAN可能是与MDD合并AMI相关的关键基因。