Lewis R, Couture A, Liddick S N, Spyrou A, Bleuel D L, Campo L Crespo, Crider B P, Dombos A C, Guttormsen M, Kawano T, Larsen A C, Lewis A M, Mosby S, Perdikakis G, Prokop C J, Quinn S J, Renstrøm T, Siem S
National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 USA.
Department of Chemistry, Michigan State University, East Lansing, MI 48824 USA.
Eur Phys J A Hadron Nucl. 2023;59(3):42. doi: 10.1140/epja/s10050-023-00920-0. Epub 2023 Mar 9.
Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser-Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for (n, ) was calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and -ray strength function ( ) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and , accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important.
The online version contains supplementary material available at 10.1140/epja/s10050-023-00920-0.
当无法获得直接的实验截面时,使用豪泽 - 费什巴赫模型计算富中子核的中子俘获截面。有许多用于执行这些计算的代码,并且每个代码对基础核物理都做出了不同的假设。我们研究了与用于计算短寿命核的中子俘获截面的豪泽 - 费什巴赫代码选择相关的系统不确定性。使用三种豪泽 - 费什巴赫统计模型代码:TALYS、CoH和EMPIRE计算了(n, )的中子俘获截面。首先在不对每个代码的默认设置进行任何更改的情况下进行计算。然后纳入实验获得的核能级密度(NLD)和γ射线强度函数( )。最后,使各代码之间的核结构信息保持一致。在纳入实验获得的NLD和 、考虑基础核反应模型的差异并对未知核数据采用一致的近似之后,从这三种代码获得的中子俘获截面吻合良好。利用一致的输入和核物理来减少不同豪泽 - 费什巴赫代码计算的中子俘获截面之间的差异是可能的。然而,要确保多个代码对实验数据输入和其他核物理的处理相似,需要进行仔细的研究。因此,对所选输入和物理进行更完整的记录很重要。
在线版本包含可在10.1140/epja/s10050 - 023 - 00920 - 0获取的补充材料。