Children's Brain Tumour Research Centre, University of Nottingham, Nottingham, UK.
Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
Neuro Oncol. 2023 Oct 3;25(10):1871-1882. doi: 10.1093/neuonc/noad055.
Accurate identification of brain tumor molecular subgroups is increasingly important. We aimed to establish the most accurate and reproducible ependymoma subgroup biomarker detection techniques, across 147 cases from International Society of Pediatric Oncology (SIOP) Ependymoma II trial participants, enrolled in the pan-European "Biomarkers of Ependymoma in Children and Adolescents (BIOMECA)" study.
Across 6 European BIOMECA laboratories, we evaluated epigenetic profiling (DNA methylation array); immunohistochemistry (IHC) for nuclear p65-RELA, H3K27me3, and Tenascin-C; copy number analysis via fluorescent in situ hybridization (FISH) and MLPA (1q, CDKN2A), and MIP and DNA methylation array (genome-wide copy number evaluation); analysis of ZFTA- and YAP1-fusions by RT-PCR and sequencing, Nanostring and break-apart FISH.
DNA Methylation profiling classified 65.3% (n = 96/147) of cases as EPN-PFA and 15% (n = 22/147) as ST-ZFTA fusion-positive. Immunohistochemical loss of H3K27me3 was a reproducible and accurate surrogate marker for EPN-PFA (sensitivity 99%-100% across 3 centers). IHC for p65-RELA, FISH, and RNA-based analyses effectively identified ZFTA- and YAP-fused supratentorial ependymomas. Detection of 1q gain using FISH exhibited only 57% inter-center concordance and low sensitivity and specificity while MIP, MLPA, and DNA methylation-based approaches demonstrated greater accuracy.
We confirm, in a prospective trial cohort, that H3K27me3 immunohistochemistry is a robust EPN-PFA biomarker. Tenascin-C should be abandoned as a PFA marker. DNA methylation and MIP arrays are effective tools for copy number analysis of 1q gain, 6q, and CDKN2A loss while FISH is inadequate. Fusion detection was successful, but rare novel fusions need more extensive technologies. Finally, we propose test sets to guide future diagnostic approaches.
准确识别脑肿瘤的分子亚群变得越来越重要。我们旨在通过对国际小儿肿瘤学协会(SIOP)室管膜瘤 II 期试验的 147 名参与者进行的泛欧“儿童和青少年室管膜瘤的生物标志物(BIOMECA)”研究,建立最准确和可重复的室管膜瘤亚组生物标志物检测技术。
在 6 个欧洲 BIOMECA 实验室中,我们评估了表观遗传谱(DNA 甲基化分析);免疫组织化学(核 p65-RELA、H3K27me3 和 Tenascin-C);通过荧光原位杂交(FISH)和 MLPA(1q、CDKN2A)进行拷贝数分析,以及 MIP 和 DNA 甲基化分析(全基因组拷贝数评估);通过 RT-PCR 和测序、Nanostring 和分离 FISH 分析 ZFTA 和 YAP1 融合。
DNA 甲基化分析将 65.3%(n=96/147)的病例分类为 EPN-PFA,15%(n=22/147)为 ST-ZFTA 融合阳性。免疫组织化学丢失 H3K27me3 是 EPN-PFA 的一种可重复和准确的替代标志物(在 3 个中心的敏感性为 99%-100%)。用于 p65-RELA、FISH 和基于 RNA 的分析的 IHC 可有效识别 ZFTA 和 YAP 融合的幕上室管膜瘤。使用 FISH 检测 1q 增益的检测显示出中心间仅 57%的一致性,敏感性和特异性较低,而 MIP、MLPA 和基于 DNA 甲基化的方法显示出更高的准确性。
我们在一项前瞻性试验队列中证实,H3K27me3 免疫组织化学是一种强大的 EPN-PFA 生物标志物。Tenascin-C 应被放弃作为 PFA 标志物。DNA 甲基化和 MIP 阵列是用于 1q 增益、6q 和 CDKN2A 缺失的拷贝数分析的有效工具,而 FISH 则不足。融合检测是成功的,但罕见的新融合需要更广泛的技术。最后,我们提出了测试套件来指导未来的诊断方法。