Suppr超能文献

通过转录组分析对ZFTA-RELA融合的幕上室管膜瘤进行双糖链蛋白聚糖驱动的风险分层。

Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling.

作者信息

Okonechnikov Konstantin, Ghasemi David R, Schrimpf Daniel, Tonn Svenja, Mynarek Martin, Koster Jan, Milde Till, Zheng Tuyu, Sievers Philipp, Sahm Felix, Jones David T W, von Deimling Andreas, Pfister Stefan M, Kool Marcel, Pajtler Kristian W, Korshunov Andrey

机构信息

Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.

Division of Pediatric Neuro-Oncology (B062), German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.

出版信息

Acta Neuropathol Commun. 2025 Jan 7;13(1):4. doi: 10.1186/s40478-024-01921-w.

Abstract

Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet. Here, we performed methylation-based DNA profiling and transcriptome RNA sequencing analysis of 80 ST-EPN ZFTA-RELA investigating the clinical significance of various molecular patterns. The principal types of ZFTA-RELA fusions, based on breakpoint location, demonstrated no significant correlations with clinical outcomes. Multigene analysis disclosed 1892 survival-associated genes, and a metagene set of 100 genes subdivided ST-EPN ZFTA-RELA into favorable and unfavorable transcriptome subtypes composed of different cell subpopulations as detected by deconvolution analysis. BGN (biglycan) was identified as the top-ranked survival-associated gene and high BGN expression levels were associated with poor survival (Hazard Ratio 17.85 for PFS and 45.48 for OS; log-rank; p-value < 0.01). Furthermore, BGN immunopositivity was identified as a strong prognostic indicator of poor survival in ST-EPN, and this finding was confirmed in an independent validation set of 56 samples. Our results indicate that integrating BGN expression (at mRNA and/or protein level) into risk stratification models may improve ST-EPN ZFTA-RELA outcome prediction. Therefore, gene and/or protein expression analyses for this molecular marker could be adopted for ST-EPN ZFTA-RELA prognostication and may help assign patients to optimal therapies in prospective clinical trials.

摘要

近期的基因组研究已能够将颅内室管膜瘤细分为具有高度特异性临床特征和预后的分子不同亚组。大多数幕上室管膜瘤(ST-EPN)存在ZFTA-RELA融合,一般被指定为中危肿瘤变异型。然而,ST-EPN ZFTA-RELA内的分子预后指标尚未确定。在此,我们对80例ST-EPN ZFTA-RELA进行了基于甲基化的DNA谱分析和转录组RNA测序分析,以研究各种分子模式的临床意义。基于断点位置的ZFTA-RELA融合主要类型与临床预后无显著相关性。多基因分析揭示了1892个与生存相关的基因,通过去卷积分析检测到,由100个基因组成的一个元基因集将ST-EPN ZFTA-RELA细分为由不同细胞亚群组成的预后良好和不良的转录组亚型。BGN(双糖链蛋白聚糖)被确定为排名最高的与生存相关基因,高BGN表达水平与不良生存相关(无进展生存期的风险比为17.85,总生存期的风险比为45.48;对数秩检验;p值<0.01)。此外,BGN免疫阳性被确定为ST-EPN患者不良生存的强有力预后指标,这一发现在一个由56个样本组成的独立验证集中得到了证实。我们的结果表明,将BGN表达(在mRNA和/或蛋白水平)纳入风险分层模型可能会改善ST-EPN ZFTA-RELA的预后预测。因此,针对这一分子标志物的基因和/或蛋白表达分析可用于ST-EPN ZFTA-RELA的预后评估,并可能有助于在前瞻性临床试验中将患者分配至最佳治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfce/11706152/ae6535c3c46b/40478_2024_1921_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验