Suppr超能文献

具有隐式侧链灵活性的高效蛋白质-配体对接深度学习模型。

Deep Learning Model for Efficient Protein-Ligand Docking with Implicit Side-Chain Flexibility.

作者信息

Masters Matthew R, Mahmoud Amr H, Wei Yao, Lill Markus A

机构信息

Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.

出版信息

J Chem Inf Model. 2023 Mar 27;63(6):1695-1707. doi: 10.1021/acs.jcim.2c01436. Epub 2023 Mar 14.

Abstract

Protein-ligand docking is an essential tool in structure-based drug design with applications ranging from virtual high-throughput screening to pose prediction for lead optimization. Most docking programs for pose prediction are optimized for redocking to an existing cocrystallized protein structure, ignoring protein flexibility. In real-world drug design applications, however, protein flexibility is an essential feature of the ligand-binding process. Flexible protein-ligand docking still remains a significant challenge to computational drug design. To target this challenge, we present a deep learning (DL) model for flexible protein-ligand docking based on the prediction of an intermolecular Euclidean distance matrix (EDM), making the typical use of iterative search algorithms obsolete. The model was trained on a large-scale data set of protein-ligand complexes and evaluated on independent test sets. Our model generates high quality poses for a diverse set of protein and ligand structures and outperforms comparable docking methods.

摘要

蛋白质-配体对接是基于结构的药物设计中的一项重要工具,其应用范围涵盖从虚拟高通量筛选到用于先导优化的构象预测。大多数用于构象预测的对接程序都是针对重新对接至现有的共结晶蛋白质结构进行优化的,而忽略了蛋白质的灵活性。然而,在实际的药物设计应用中,蛋白质的灵活性是配体结合过程的一个基本特征。灵活的蛋白质-配体对接仍然是计算药物设计面临的一项重大挑战。为应对这一挑战,我们提出了一种基于分子间欧几里得距离矩阵(EDM)预测的用于灵活蛋白质-配体对接的深度学习(DL)模型,从而使迭代搜索算法的传统应用变得不再必要。该模型在一个大规模的蛋白质-配体复合物数据集上进行训练,并在独立测试集上进行评估。我们的模型为各种蛋白质和配体结构生成高质量的构象,并且性能优于同类对接方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验