Cao Duanhua, Chen Mingan, Zhang Runze, Wang Zhaokun, Huang Manlin, Yu Jie, Jiang Xinyu, Fan Zhehuan, Zhang Wei, Zhou Hao, Li Xutong, Fu Zunyun, Zhang Sulin, Zheng Mingyue
Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
Nat Methods. 2025 Feb;22(2):310-322. doi: 10.1038/s41592-024-02516-y. Epub 2024 Nov 27.
Accurately predicting protein-ligand interactions is crucial for understanding cellular processes. We introduce SurfDock, a deep-learning method that addresses this challenge by integrating protein sequence, three-dimensional structural graphs and surface-level features into an equivariant architecture. SurfDock employs a generative diffusion model on a non-Euclidean manifold, optimizing molecular translations, rotations and torsions to generate reliable binding poses. Our extensive evaluations across various benchmarks demonstrate SurfDock's superiority over existing methods in docking success rates and adherence to physical constraints. It also exhibits remarkable generalizability to unseen proteins and predicted apo structures, while achieving state-of-the-art performance in virtual screening tasks. In a real-world application, SurfDock identified seven novel hit molecules in a virtual screening project targeting aldehyde dehydrogenase 1B1, a key enzyme in cellular metabolism. This showcases SurfDock's ability to elucidate molecular mechanisms underlying cellular processes. These results highlight SurfDock's potential as a transformative tool in structural biology, offering enhanced accuracy, physical plausibility and practical applicability in understanding protein-ligand interactions.
准确预测蛋白质 - 配体相互作用对于理解细胞过程至关重要。我们引入了SurfDock,这是一种深度学习方法,通过将蛋白质序列、三维结构图和表面水平特征整合到一个等变架构中来应对这一挑战。SurfDock在非欧几里得流形上采用生成扩散模型,优化分子平移、旋转和扭转以生成可靠的结合姿势。我们在各种基准上的广泛评估表明,SurfDock在对接成功率和对物理约束的遵循方面优于现有方法。它对未见蛋白质和预测的无配体结构也具有显著的泛化能力,同时在虚拟筛选任务中达到了最先进的性能。在一个实际应用中,SurfDock在针对醛脱氢酶1B1(细胞代谢中的一种关键酶)的虚拟筛选项目中鉴定出了七种新型命中分子。这展示了SurfDock阐明细胞过程潜在分子机制的能力。这些结果凸显了SurfDock作为结构生物学中一种变革性工具的潜力,在理解蛋白质 - 配体相互作用方面提供了更高的准确性、物理合理性和实际适用性。